1/(9x-12)=3x+3

Simple and best practice solution for 1/(9x-12)=3x+3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/(9x-12)=3x+3 equation:



1/(9x-12)=3x+3
We move all terms to the left:
1/(9x-12)-(3x+3)=0
Domain of the equation: (9x-12)!=0
We move all terms containing x to the left, all other terms to the right
9x!=12
x!=12/9
x!=1+1/3
x∈R
We get rid of parentheses
1/(9x-12)-3x-3=0
We multiply all the terms by the denominator
-3x*(9x-12)-3*(9x-12)+1=0
We multiply parentheses
-27x^2+36x-27x+36+1=0
We add all the numbers together, and all the variables
-27x^2+9x+37=0
a = -27; b = 9; c = +37;
Δ = b2-4ac
Δ = 92-4·(-27)·37
Δ = 4077
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{4077}=\sqrt{9*453}=\sqrt{9}*\sqrt{453}=3\sqrt{453}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-3\sqrt{453}}{2*-27}=\frac{-9-3\sqrt{453}}{-54} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+3\sqrt{453}}{2*-27}=\frac{-9+3\sqrt{453}}{-54} $

See similar equations:

| 63+c=79 | | -1.8-6x=12.0 | | 5+22/3x=17 | | -8.6=u/4-2.× | | −6d+6=114 | | 4x+x=2x+25 | | 7x+15.89=19.82 | | b=90+(10+8) | | 3c^2-32c+20=0 | | 4x+2=9x-9+22 | | 1.4n+(-7)+(-1.4n)=4 | | 5p-6p=1+p-3-4 | | x+22=5x-26 | | 4x+17+1-x=-3x | | 5y-(2-y)=20 | | -3(-4u+5)-4u=2(u-3)-6 | | 10x+25x-3)=275 | | 22.36+473c=64.83 | | 22.36+473c=64+93 | | 0.13x+0.3(x-2)=0.01(2x-4) | | 7a+50+14a-20=90 | | 6x-x-3x=3x+12 | | 10x+(250x-75)=275 | | 5z+36=-7z | | 1.5(2p+4)=6+3p | | 47=-19+x | | 11w+2(w+10)=5w-6 | | 27=4r−5 | | 4x-8=16x-32 | | 9x+17=10x+6 | | -10.80=2.8a | | -2.4-3x=11.1 |

Equations solver categories