If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/(x+1)+4=9/x+1
We move all terms to the left:
1/(x+1)+4-(9/x+1)=0
Domain of the equation: (x+1)!=0
We move all terms containing x to the left, all other terms to the right
x!=-1
x∈R
Domain of the equation: x+1)!=0We get rid of parentheses
x∈R
1/(x+1)-9/x-1+4=0
We calculate fractions
x/(x^2+x)+(-9x-9)/(x^2+x)-1+4=0
We add all the numbers together, and all the variables
x/(x^2+x)+(-9x-9)/(x^2+x)+3=0
We multiply all the terms by the denominator
x+(-9x-9)+3*(x^2+x)=0
We multiply parentheses
3x^2+x+(-9x-9)+3x=0
We get rid of parentheses
3x^2+x-9x+3x-9=0
We add all the numbers together, and all the variables
3x^2-5x-9=0
a = 3; b = -5; c = -9;
Δ = b2-4ac
Δ = -52-4·3·(-9)
Δ = 133
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-\sqrt{133}}{2*3}=\frac{5-\sqrt{133}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+\sqrt{133}}{2*3}=\frac{5+\sqrt{133}}{6} $
| 7w-4=3w+8 | | 23x-5+14x+110+70=360 | | -2(8x-2)=-16x-2 | | x+1=7x-5+ | | 1.2a-2.4=4.8 | | 3x-3=-6x+42 | | 90=3w^2+9 | | 5x+5=4+6x | | 11p+11p+2p+2p=20 | | 6x+10=14x+6 | | 1/6m=2/5 | | x^2=17+12√2 | | 5x+8=0+2x | | |-7x-3|=72 | | 4(3x+2)-19=14 | | 4x+2=2(x=3) | | 6x+10=14+6 | | 9x+x-2x-6x-x=8 | | 5x+3=1+6x | | 10+7x=4x+10 | | 5(4b+12)=8b-16 | | 5x+8x-7x-5=13 | | 13y-1=129 | | 4x+1=-26+7x | | 1/b+1+1/b-1=2/b^2-1 | | 5w+2w+w-6w=18 | | 3(7b-6)-18=12 | | 2+x=5x+10 | | 3y+10=5y+3=5 | | 35-5(2x-5x)=20 | | 10+c/18=-62 | | 50=5x+3x+10 |