If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/(x+4)(x+5)-1/(x+5)(x+6)-1/(x+6)(x+7)=1/18
We move all terms to the left:
1/(x+4)(x+5)-1/(x+5)(x+6)-1/(x+6)(x+7)-(1/18)=0
Domain of the equation: (x+4)(x+5)!=0
We move all terms containing x to the left, all other terms to the right
x+4)(x!=-5
x∈R
Domain of the equation: (x+5)(x+6)!=0
We move all terms containing x to the left, all other terms to the right
x+5)(x!=-6
x∈R
Domain of the equation: (x+6)(x+7)!=0We add all the numbers together, and all the variables
We move all terms containing x to the left, all other terms to the right
x+6)(x!=-7
x∈R
1/(x+4)(x+5)-1/(x+5)(x+6)-1/(x+6)(x+7)-(+1/18)=0
We get rid of parentheses
1/(x+4)(x+5)-1/(x+5)(x+6)-1/(x+6)(x+7)-1/18=0
We multiply parentheses ..
1/(+x^2+5x+4x+20)-1/(x+5)(x+6)-1/(x+6)(x+7)-1/18=0
We calculate fractions
(1*(+x^2+6x+5x+30)*(+x^2+7x+6x+42)*18)/((+x^2+5x+4x+20)*(+x^2+6x+5x+30)*(+x^2+7x+6x+42)*18)+(-1*(+x^2+5x+4x+20)*(+x^2+7x+6x+42)*18)/((+x^2+5x+4x+20)*(+x^2+6x+5x+30)*(+x^2+7x+6x+42)*18)+(-1*(+x^2+5x+4x+20)*(+x^2+6x+5x+30)*18)/((+x^2+5x+4x+20)*(+x^2+6x+5x+30)*(+x^2+7x+6x+42)*18)+(-1*(+x^2+5x+4x+20)*(+x^2+6x+5x+30)*(+x^2+7x+6x+42))/((+x^2+5x+4x+20)*(+x^2+6x+5x+30)*(+x^2+7x+6x+42)*18)=0
We calculate terms in parentheses: +(1*(+x^2+6x+5x+30)*(+x^2+7x+6x+42)*18)/((+x^2+5x+4x+20)*(+x^2+6x+5x+30)*(+x^2+7x+6x+42)*18), so:
1*(+x^2+6x+5x+30)*(+x^2+7x+6x+42)*18)/((+x^2+5x+4x+20)*(+x^2+6x+5x+30)*(+x^2+7x+6x+42)*18
We multiply all the terms by the denominator
1*(+x^2+6x+5x+30)*(+x^2+7x+6x+42)*18)
Back to the equation:
+(1*(+x^2+6x+5x+30)*(+x^2+7x+6x+42)*18))
We calculate terms in parentheses: +(-1*(+x^2+5x+4x+20)*(+x^2+7x+6x+42)*18)/((+x^2+5x+4x+20)*(+x^2+6x+5x+30)*(+x^2+7x+6x+42)*18), so:
-1*(+x^2+5x+4x+20)*(+x^2+7x+6x+42)*18)/((+x^2+5x+4x+20)*(+x^2+6x+5x+30)*(+x^2+7x+6x+42)*18
We multiply all the terms by the denominator
-1*(+x^2+5x+4x+20)*(+x^2+7x+6x+42)*18)
Back to the equation:
+(-1*(+x^2+5x+4x+20)*(+x^2+7x+6x+42)*18))
We calculate terms in parentheses: +(-1*(+x^2+5x+4x+20)*(+x^2+6x+5x+30)*18)/((+x^2+5x+4x+20)*(+x^2+6x+5x+30)*(+x^2+7x+6x+42)*18), so:
-1*(+x^2+5x+4x+20)*(+x^2+6x+5x+30)*18)/((+x^2+5x+4x+20)*(+x^2+6x+5x+30)*(+x^2+7x+6x+42)*18
We multiply all the terms by the denominator
-1*(+x^2+5x+4x+20)*(+x^2+6x+5x+30)*18)
Back to the equation:
+(-1*(+x^2+5x+4x+20)*(+x^2+6x+5x+30)*18))
We calculate terms in parentheses: +(-1*(+x^2+5x+4x+20)*(+x^2+6x+5x+30)*(+x^2+7x+6x+42))/((+x^2+5x+4x+20)*(+x^2+6x+5x+30)*(+x^2+7x+6x+42)*18), so:We add all the numbers together, and all the variables
-1*(+x^2+5x+4x+20)*(+x^2+6x+5x+30)*(+x^2+7x+6x+42))/((+x^2+5x+4x+20)*(+x^2+6x+5x+30)*(+x^2+7x+6x+42)*18
We multiply all the terms by the denominator
-1*(+x^2+5x+4x+20)*(+x^2+6x+5x+30)*(+x^2+7x+6x+42))
Back to the equation:
+(-1*(+x^2+5x+4x+20)*(+x^2+6x+5x+30)*(+x^2+7x+6x+42)))
2x^2+(1*(+x^2+6x+5x+30)*(+x^2+7x+6x+42)*18))+(-1*(+x^2+5x+4x+20)*(+x^2+7x+6x+42)*18))+(-1*(+30)*18))+(-1*(+x^2+5x+4x+20)*(+x^2+6x+5x+30)*(+x^2+7x+6x+42)))+5x+4x+6x+5x+20)*(=0
We add all the numbers together, and all the variables
2x^2+(1*(+x^2+6x+5x+30)*(+x^2+7x+6x+42)*18))+(-1*(+x^2+5x+4x+20)*(+x^2+7x+6x+42)*18))+(-1*30*18))+(-1*(+x^2+5x+4x+20)*(+x^2+6x+5x+30)*(+x^2+7x+6x+42)))+5x+4x+6x+5x+20)*(=0
We add all the numbers together, and all the variables
2x^2+(1*(+x^2+6x+5x+30)*(+x^2+7x+6x+42)*18))+(-1*(+x^2+5x+4x+20)*(+x^2+7x+6x+42)*18))+(-540))+(-1*(+x^2+5x+4x+20)*(+x^2+6x+5x+30)*(+x^2+7x+6x+42)))+5x+4x+6x+5x+20)*(=0
| n²-n-110=0 | | 4x/100=800 | | -10h+5=7h+54 | | 8x²–32=0 | | 189−x=378 | | a4=1/4×3/2(4–1) | | 3(x-8)-5(7x-6)=6(3x+2)-5(6x-1)-9x | | ⅓x=23 | | 12(5x–2)=48+12x | | -3.5x…=14 | | 2x(x^2-4)=6(x-2) | | 5−x3=-12(x+6) | | 2^(9x-1)=8^(2x) | | 11x2–10=34 | | 16^(2)x-3=4^(x)+2 | | 2x-1=-20 | | 5x-(3-2x)=11 | | 2(13.5(x+2)=7x+4 | | 120x²-233x=-112 | | -3x+2+3=15 | | -3|x+2|+3=15 | | 2(x+4)^2=18 | | 12x2=8x+28 | | x*0.6=7 | | 2x(x-34)=1 | | 2=3w | | -3x^2-18x-6=0 | | X2-10x=-5 | | x+12/15=3/5 | | X²=-4y | | 1/3x+3=30 | | t/20=1 |