1/10x+11=1/5x+10

Simple and best practice solution for 1/10x+11=1/5x+10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/10x+11=1/5x+10 equation:



1/10x+11=1/5x+10
We move all terms to the left:
1/10x+11-(1/5x+10)=0
Domain of the equation: 10x!=0
x!=0/10
x!=0
x∈R
Domain of the equation: 5x+10)!=0
x∈R
We get rid of parentheses
1/10x-1/5x-10+11=0
We calculate fractions
5x/50x^2+(-10x)/50x^2-10+11=0
We add all the numbers together, and all the variables
5x/50x^2+(-10x)/50x^2+1=0
We multiply all the terms by the denominator
5x+(-10x)+1*50x^2=0
Wy multiply elements
50x^2+5x+(-10x)=0
We get rid of parentheses
50x^2+5x-10x=0
We add all the numbers together, and all the variables
50x^2-5x=0
a = 50; b = -5; c = 0;
Δ = b2-4ac
Δ = -52-4·50·0
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{25}=5$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-5}{2*50}=\frac{0}{100} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+5}{2*50}=\frac{10}{100} =1/10 $

See similar equations:

| 3(x+7)-2(x-9)=97 | | y/8/19=30 | | 2x^2=15-8x | | 9x+3x=10 | | 2(6-4x)=25-10x | | z4− 1= 3 | | 12x-21=5x-42 | | 4(p-15)=6p | | -w+294=221 | | 2.50r+15.00=60.00 | | 7+i=5 | | 186=247-u | | 186-247=u | | 2^2=15-8x | | 40-5v=3v | | 2x+12=2(x+6 | | 2(3x+1)-x=3-2(2x+2 | | w/3+18=20 | | 2/3n+12=42 | | 4(x-19)-2(x-17)=12 | | 10x+1=-159 | | -5=x/3=-2 | | 133=7(4-5x) | | .(3+2x)-(3+2x)=5 | | 5(x-16)-2(x-13)=15 | | 2-7n=-61 | | 48/u=8 | | 2x+3(x-4)=13 | | c/9+5=11 | | 63-2w=7w | | -7u-19=-3(u-u) | | (x)(x+1)=323 |

Equations solver categories