1/10x+5=1x-13

Simple and best practice solution for 1/10x+5=1x-13 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/10x+5=1x-13 equation:



1/10x+5=1x-13
We move all terms to the left:
1/10x+5-(1x-13)=0
Domain of the equation: 10x!=0
x!=0/10
x!=0
x∈R
We add all the numbers together, and all the variables
1/10x-(x-13)+5=0
We get rid of parentheses
1/10x-x+13+5=0
We multiply all the terms by the denominator
-x*10x+13*10x+5*10x+1=0
Wy multiply elements
-10x^2+130x+50x+1=0
We add all the numbers together, and all the variables
-10x^2+180x+1=0
a = -10; b = 180; c = +1;
Δ = b2-4ac
Δ = 1802-4·(-10)·1
Δ = 32440
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{32440}=\sqrt{4*8110}=\sqrt{4}*\sqrt{8110}=2\sqrt{8110}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(180)-2\sqrt{8110}}{2*-10}=\frac{-180-2\sqrt{8110}}{-20} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(180)+2\sqrt{8110}}{2*-10}=\frac{-180+2\sqrt{8110}}{-20} $

See similar equations:

| y/28=7 | | 2f+3=11f-29 | | x=2x-8+x+x=13 | | 9n+48=7n-2n(n-2) | | 52,000=-((160x+120)/x(2x+3)) | | x(2x+163)-6240000=0 | | 5^2x=6^3x+4 | | 15y-17=0 | | (u+6)(u-3)=0 | | 34=10x+14 | | (2x-1)=x4 | | 23+(x+4)+(4x)=180 | | 2y+15=47 | | 85=4w+17 | | 114+2x+x=180 | | 5x-28=9 | | 2(l)+2(l-3)=26 | | 2l+(2l-3)=26 | | 2l+2l-3=26 | | 3.14159265358979323846264=x | | (2l)+(2l-3)=26 | | -7(2t+9)=-21 | | 3(5)-2s=-17 | | 4(2x-10)/3=2(X-4) | | 10m-6=5m-+4 | | 2z/7-8=3 | | 8.1=x-2.1 | | 2(9-2r)-3r=-17 | | 10m-6=5m+4 | | 10(s-10)=-122 | | x/8+6=-4 | | z/10-4=-4 |

Equations solver categories