1/10y+3=3/5y-2

Simple and best practice solution for 1/10y+3=3/5y-2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/10y+3=3/5y-2 equation:



1/10y+3=3/5y-2
We move all terms to the left:
1/10y+3-(3/5y-2)=0
Domain of the equation: 10y!=0
y!=0/10
y!=0
y∈R
Domain of the equation: 5y-2)!=0
y∈R
We get rid of parentheses
1/10y-3/5y+2+3=0
We calculate fractions
5y/50y^2+(-30y)/50y^2+2+3=0
We add all the numbers together, and all the variables
5y/50y^2+(-30y)/50y^2+5=0
We multiply all the terms by the denominator
5y+(-30y)+5*50y^2=0
Wy multiply elements
250y^2+5y+(-30y)=0
We get rid of parentheses
250y^2+5y-30y=0
We add all the numbers together, and all the variables
250y^2-25y=0
a = 250; b = -25; c = 0;
Δ = b2-4ac
Δ = -252-4·250·0
Δ = 625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{625}=25$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-25)-25}{2*250}=\frac{0}{500} =0 $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-25)+25}{2*250}=\frac{50}{500} =1/10 $

See similar equations:

| n+n+n+6=n+18 | | 2d-8=-74 | | 16h+2h-12h-4h=8 | | 7-x+9=7 | | 3x-113=7x+31 | | 5y+4=-141 | | -2.5+1.5y=2y-3 | | 2a+3a-6=-4 | | 2(3x+9)=5x+8 | | 4(x-1)=3(x+5)-11 | | 9-x/4-5=-2 | | -z/4=3/4 | | 73=19-13w-4w | | x-9+2x-5=2x | | x2+3x+25=0 | | 4w-13w-19=73 | | (2x+4)^2=0 | | 6+2x-10=-8 | | 2^2x-4=64 | | (a+4)^2+45=0 | | 7p-16=22 | | (2x-5)=(4x-10) | | –2x+12=4 | | 2h-10=4h-6 | | 86z+476-367*43775=36767878 | | -4+x+9=7 | | 264=2w^2+2w | | 7x+121=180 | | 35=u/3+14 | | 2m-4/3m=2/3m-1/9 | | (2x+6)=40 | | 5y+9=209 |

Equations solver categories