1/10y+9=3/5y-1

Simple and best practice solution for 1/10y+9=3/5y-1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/10y+9=3/5y-1 equation:



1/10y+9=3/5y-1
We move all terms to the left:
1/10y+9-(3/5y-1)=0
Domain of the equation: 10y!=0
y!=0/10
y!=0
y∈R
Domain of the equation: 5y-1)!=0
y∈R
We get rid of parentheses
1/10y-3/5y+1+9=0
We calculate fractions
5y/50y^2+(-30y)/50y^2+1+9=0
We add all the numbers together, and all the variables
5y/50y^2+(-30y)/50y^2+10=0
We multiply all the terms by the denominator
5y+(-30y)+10*50y^2=0
Wy multiply elements
500y^2+5y+(-30y)=0
We get rid of parentheses
500y^2+5y-30y=0
We add all the numbers together, and all the variables
500y^2-25y=0
a = 500; b = -25; c = 0;
Δ = b2-4ac
Δ = -252-4·500·0
Δ = 625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{625}=25$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-25)-25}{2*500}=\frac{0}{1000} =0 $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-25)+25}{2*500}=\frac{50}{1000} =1/20 $

See similar equations:

| 2=1/3m^2-10 | | 4i(2−3i)(7+3i)=0 | | 3×(7+10)=g+30 | | d/7-6=-13 | | 31j−20=259 | | 0.4q=0.16 | | 3x-5+4x-1=180 | | 7^5x=3000 | | n+2=54 | | x+1*2x+(x-10)=180 | | -57+n/3=0 | | 2x-57=13 | | 4x^{2}+10x-50=0 | | -2(x+1)=-5x-8 | | 21.8+4y=8y+11 | | 2x–6.5=19.8 | | 60+x/2=40 | | Xt11/2=53/4 | | -2+4x=7x+34 | | 8m-54=82 | | -8=m/11+9 | | x=(180+2x) | | 5r+10=-85 | | 3x+22=x-14 | | -5r+10=-85 | | 10=p/4+12 | | 30-0.05t=60 | | 6x+10+2x+10=180 | | x^2+4x+1.5=2 | | 3x-14=9x | | 0.10n=25+.05n | | 3+n/4=11 |

Equations solver categories