If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/13*j=19
We move all terms to the left:
1/13*j-(19)=0
Domain of the equation: 13*j!=0We multiply all the terms by the denominator
j!=0/1
j!=0
j∈R
-19*13*j+1=0
Wy multiply elements
-247j*j+1=0
Wy multiply elements
-247j^2+1=0
a = -247; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-247)·1
Δ = 988
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{988}=\sqrt{4*247}=\sqrt{4}*\sqrt{247}=2\sqrt{247}$$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{247}}{2*-247}=\frac{0-2\sqrt{247}}{-494} =-\frac{2\sqrt{247}}{-494} =-\frac{\sqrt{247}}{-247} $$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{247}}{2*-247}=\frac{0+2\sqrt{247}}{-494} =\frac{2\sqrt{247}}{-494} =\frac{\sqrt{247}}{-247} $
| 1/22*e=25 | | 16*d=320 | | 7*a=112 | | r*12=144 | | 1/23*w=18 | | 25*t=550 | | 1/7*q=11 | | n*22=484 | | -2k+7=25 | | 1/21*f=13 | | f*7=168 | | 15*d=120 | | 10*r=230 | | 1/9*i=13 | | 13*d=195 | | 4x+7=+46 | | 4-2(x-7)x=3 | | 6(2y-1)-2(3y=9 | | d*6=132 | | k*20=140 | | 2u+4.6=33.2 | | k(20)=140 | | 13x+6-7+90=180 | | 2u+5.2=33.2 | | x+32=2x-17 | | -15-5y+2y=9 | | (4x+5)+(5×22)=180 | | -13x-7=3+11x | | w*19=418 | | 12w=20 | | t*16=352 | | n*13=325 |