1/14-5/2v=4/7v

Simple and best practice solution for 1/14-5/2v=4/7v equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/14-5/2v=4/7v equation:



1/14-5/2v=4/7v
We move all terms to the left:
1/14-5/2v-(4/7v)=0
Domain of the equation: 2v!=0
v!=0/2
v!=0
v∈R
Domain of the equation: 7v)!=0
v!=0/1
v!=0
v∈R
We add all the numbers together, and all the variables
-5/2v-(+4/7v)+1/14=0
We get rid of parentheses
-5/2v-4/7v+1/14=0
We calculate fractions
98v^2/196v^2+(-490v)/196v^2+(-112v)/196v^2=0
We multiply all the terms by the denominator
98v^2+(-490v)+(-112v)=0
We get rid of parentheses
98v^2-490v-112v=0
We add all the numbers together, and all the variables
98v^2-602v=0
a = 98; b = -602; c = 0;
Δ = b2-4ac
Δ = -6022-4·98·0
Δ = 362404
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{362404}=602$
$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-602)-602}{2*98}=\frac{0}{196} =0 $
$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-602)+602}{2*98}=\frac{1204}{196} =6+1/7 $

See similar equations:

| 200=025x | | X/5+x/7=1 | | 19.2-5b=-6.2b | | 1/5(x+4)=10 | | -10+4s+4=6+s | | -19-4v=-7v+5 | | 4(6+x)=10x+5 | | 144x^2-16(3.14)x^2=x | | -(2a-6)=6*2a | | -80=15m | | -2(2a-6)=6*2a | | 4x(6x+3)=10x+5 | | 3x+5/12=x/3 | | 50+0.40x=20+0.70x | | 442=18n+45 | | -2(6a-1)=-1.66 | | 13-m=2(-4+m | | 12+3n=8n-48-5n | | -5k+6=-4k | | 9=q/7 | | -26=v/20 | | 3(-8m-2)=114 | | 0=250x^2+10x-119 | | z+24=976 | | f+6-5=5 | | m-100=-1 | | 8n-6=4 | | 2q/10=1 | | 6(7+4p)+8=98 | | 6g=2 | | 2d+6/9+10=14 | | 5a+-19a=-14 |

Equations solver categories