If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/2(10x+8)-6=-1/3(24x-12)
We move all terms to the left:
1/2(10x+8)-6-(-1/3(24x-12))=0
Domain of the equation: 2(10x+8)!=0
x∈R
Domain of the equation: 3(24x-12))!=0We calculate fractions
x∈R
(3x2/(2(10x+8)*3(24x-12)))+(-(-2x1)/(2(10x+8)*3(24x-12)))-6=0
We calculate terms in parentheses: +(3x2/(2(10x+8)*3(24x-12))), so:
3x2/(2(10x+8)*3(24x-12))
We multiply all the terms by the denominator
3x2
We add all the numbers together, and all the variables
3x^2
Back to the equation:
+(3x^2)
We calculate terms in parentheses: +(-(-2x1)/(2(10x+8)*3(24x-12))), so:a = 3; b = 2; c = -6;
-(-2x1)/(2(10x+8)*3(24x-12))
We add all the numbers together, and all the variables
-(-2x)/(2(10x+8)*3(24x-12))
We multiply all the terms by the denominator
-(-2x)
We get rid of parentheses
2x
Back to the equation:
+(2x)
Δ = b2-4ac
Δ = 22-4·3·(-6)
Δ = 76
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{76}=\sqrt{4*19}=\sqrt{4}*\sqrt{19}=2\sqrt{19}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{19}}{2*3}=\frac{-2-2\sqrt{19}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{19}}{2*3}=\frac{-2+2\sqrt{19}}{6} $
| 2(x-6)+9=3x+12 | | -6+8m=1-2m+3 | | x-10=x+2x-12 | | 2(3z+1)-9=23 | | h+2(h+6)=18 | | 0.16(y-1)+0.08y=0.14y-0.2 | | -10-4n=-n-8n | | 3x=10x+3 | | 26=10a-34 | | -19+20m=19m-2 | | 2/3x-1/4=3/4+3/5x | | 13=13+5(x–2) | | -5w+10=6w | | ½(18-5x)=⅓(6-4x) | | -11+8x=5 | | 6(5x+4)=30x+24 | | 45=k-9 | | 3x=19/7 | | 3(5x-2=54 | | 3(5y-3)-25=13-(2y-3) | | 2-7(x-3)=9 | | `12+y=55 | | N+1+4+7=-7n-4n | | 4p-7-3p=12 | | 3x-16=5x+10 | | -7x+3=-3x-1 | | s+6+s+6+2s+s+s=160 | | 2x+4-4x-5=15 | | 5t+6-8t=30-19+9t | | 5(v−77)=95 | | -4x+9=7x-2x | | -15-b-16b=11-19b |