If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/2(14y+26)=1/5(25y-15)
We move all terms to the left:
1/2(14y+26)-(1/5(25y-15))=0
Domain of the equation: 2(14y+26)!=0
y∈R
Domain of the equation: 5(25y-15))!=0We calculate fractions
y∈R
(5y2/(2(14y+26)*5(25y-15)))+(-2y1/(2(14y+26)*5(25y-15)))=0
We calculate terms in parentheses: +(5y2/(2(14y+26)*5(25y-15))), so:
5y2/(2(14y+26)*5(25y-15))
We multiply all the terms by the denominator
5y2
We add all the numbers together, and all the variables
5y^2
Back to the equation:
+(5y^2)
We calculate terms in parentheses: +(-2y1/(2(14y+26)*5(25y-15))), so:We get rid of parentheses
-2y1/(2(14y+26)*5(25y-15))
We multiply all the terms by the denominator
-2y1
We add all the numbers together, and all the variables
-2y
Back to the equation:
+(-2y)
5y^2-2y=0
a = 5; b = -2; c = 0;
Δ = b2-4ac
Δ = -22-4·5·0
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2}{2*5}=\frac{0}{10} =0 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2}{2*5}=\frac{4}{10} =2/5 $
| -3(4b+1)=-12b-3 | | -3p+8=-21 | | 3a^2-2a+1=0 | | 3+a+1)=8a+1 | | 52=2x+6x+-4 | | -(4K-1)=1-4k | | 5x-12=x-32x=-5 | | 25k-k-22k=38 | | n–2=10n+4/2 | | x/9=8/3 | | (x-20)+(185-2X)=90 | | 435=107+3x | | 36c-37c+8=26 | | 10=x-3*50 | | 7^x=36 | | 14+4k=2−2k= | | 4x-1/10=3x+4/10 | | 1/3x+1/3+2x+4/3=5x-1 | | 5h+2(11−h)=− | | c=34.41+0.25 | | 4=49x=28x+7 | | y-33=52.9 | | 4x-7(0.03x)=79.58 | | -7y/5=-21 | | 13=1-r | | 1b/7+1/4=15 | | -2v=-4/9 | | -y+3y+2=32 | | |p+2|=10 | | 4(4x+22)=5(x+33) | | (g-3)/3=(5/2) | | -3(2x-5)=-33 |