If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/2(16e+48)=-1/3(24e-24)
We move all terms to the left:
1/2(16e+48)-(-1/3(24e-24))=0
Domain of the equation: 2(16e+48)!=0
e∈R
Domain of the equation: 3(24e-24))!=0We calculate fractions
e∈R
(3e2/(2(16e+48)*3(24e-24)))+(-(-2e1)/(2(16e+48)*3(24e-24)))=0
We calculate terms in parentheses: +(3e2/(2(16e+48)*3(24e-24))), so:
3e2/(2(16e+48)*3(24e-24))
We multiply all the terms by the denominator
3e2
We add all the numbers together, and all the variables
3e^2
Back to the equation:
+(3e^2)
We calculate terms in parentheses: +(-(-2e1)/(2(16e+48)*3(24e-24))), so:a = 3; b = 2; c = 0;
-(-2e1)/(2(16e+48)*3(24e-24))
We add all the numbers together, and all the variables
-(-2e)/(2(16e+48)*3(24e-24))
We multiply all the terms by the denominator
-(-2e)
We get rid of parentheses
2e
Back to the equation:
+(2e)
Δ = b2-4ac
Δ = 22-4·3·0
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$e_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$e_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$e_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2}{2*3}=\frac{-4}{6} =-2/3 $$e_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2}{2*3}=\frac{0}{6} =0 $
| 91p+36=127 | | 141=x18 | | p/6+8=18 | | 4.25+1.90x=20 | | 1/4x=+12=1/2x+10 | | 23x+23=552. | | 62-x=14 | | 3(2y-7)=2(y-8) | | 4+4z-2z=-2 | | -43=-3x-2x-8 | | 4a+a-11=-46 | | -4(n-2)=24 | | -4(n-10)=48 | | -5=n/5-4 | | 8=x/8+8 | | -5=x/2+7 | | -3m-4=-19 | | -3n-10=-70 | | 5=-z-9 | | -2((2-3)x+7(1-1))=-3(x-2) | | f(6)=2x^2+x-7 | | 23=3a-16 | | -25=y-15 | | 7(5x+2)=-4(6-5x) | | q-2.47/3=1.27 | | 2x+12-3x=27 | | 2(2x+2)=4(x+4) | | 3i(2i-7)=6-21 | | -21.9=-2.7+x/6 | | 16=2(3.14)(r^2) | | -e/4-5=-8) | | e/4-5=-8 |