If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/2(16x+20)=1/5(25x-40)
We move all terms to the left:
1/2(16x+20)-(1/5(25x-40))=0
Domain of the equation: 2(16x+20)!=0
x∈R
Domain of the equation: 5(25x-40))!=0We calculate fractions
x∈R
(5x2/(2(16x+20)*5(25x-40)))+(-2x1/(2(16x+20)*5(25x-40)))=0
We calculate terms in parentheses: +(5x2/(2(16x+20)*5(25x-40))), so:
5x2/(2(16x+20)*5(25x-40))
We multiply all the terms by the denominator
5x2
We add all the numbers together, and all the variables
5x^2
Back to the equation:
+(5x^2)
We calculate terms in parentheses: +(-2x1/(2(16x+20)*5(25x-40))), so:We get rid of parentheses
-2x1/(2(16x+20)*5(25x-40))
We multiply all the terms by the denominator
-2x1
We add all the numbers together, and all the variables
-2x
Back to the equation:
+(-2x)
5x^2-2x=0
a = 5; b = -2; c = 0;
Δ = b2-4ac
Δ = -22-4·5·0
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2}{2*5}=\frac{0}{10} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2}{2*5}=\frac{4}{10} =2/5 $
| 5=-9c+32 | | t−18=4(−3−43 t) | | n−7=–2n | | -12=-8x-28 | | –n−7=–2n | | 3+4x=2(−x+5)−31 | | 5x34.50=74.25. | | 5x-11=1+3x | | y=32.50+65(6) | | -2(u+2)=6u-9+2(2u+1) | | .3x+.10(100-x)=23 | | -3,2/x=4 | | y=32.50(6)+65 | | 12k-25=-1 | | 36+x+(4-x)*8=68 | | 3x+30=8x+60 | | 10m-49=41 | | 1/4(x+2)=-2(3-x) | | -3.2/x=4 | | 3n=-23 | | 4(w-1)-6=-3(-6w+2)-4w | | (-6x+6)-(-4x+3)=0 | | 2x8=46x | | 1.75/x=-0.25 | | 2(2a+2)=10 | | (-6x+6)-(-4x+3)=x | | 3(w-7)=-3w+9 | | 7/4/x=-1/4 | | -4=20r+21r | | 8=3(u+8)-7u | | 8,2/x=2.05 | | 3/4x+2/3=x-5/6 |