If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/2(18x+8)=-2/3(21x-12)
We move all terms to the left:
1/2(18x+8)-(-2/3(21x-12))=0
Domain of the equation: 2(18x+8)!=0
x∈R
Domain of the equation: 3(21x-12))!=0We calculate fractions
x∈R
(3x2/(2(18x+8)*3(21x-12)))+(-(-4x1)/(2(18x+8)*3(21x-12)))=0
We calculate terms in parentheses: +(3x2/(2(18x+8)*3(21x-12))), so:
3x2/(2(18x+8)*3(21x-12))
We multiply all the terms by the denominator
3x2
We add all the numbers together, and all the variables
3x^2
Back to the equation:
+(3x^2)
We calculate terms in parentheses: +(-(-4x1)/(2(18x+8)*3(21x-12))), so:a = 3; b = 4; c = 0;
-(-4x1)/(2(18x+8)*3(21x-12))
We add all the numbers together, and all the variables
-(-4x)/(2(18x+8)*3(21x-12))
We multiply all the terms by the denominator
-(-4x)
We get rid of parentheses
4x
Back to the equation:
+(4x)
Δ = b2-4ac
Δ = 42-4·3·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4}{2*3}=\frac{-8}{6} =-1+1/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4}{2*3}=\frac{0}{6} =0 $
| 9(5+x)=36 | | m/9=15/9 | | 2(2w+5=46 | | 16x-(9x-4)=60 | | x+x-6+x-6=180 | | 48/n=12 | | 19x-(9x-3)=73 | | 17-7x=-32 | | 4.1=-2y+16.9 | | -60x=230 | | 18+7x=8x | | x+2x-5=43 | | 42-x=20 | | 2(3x-3)=2/3(9×-6) | | y+2.4y+1.7=1.7(y−3) | | 37+x=70 | | 5x^2-10.4x+0.5=0 | | 4(3x-6)=3(2x-8) | | 5x+3x=5x+185x+3x=5x+18 | | 8t2+22t+15=0 | | 21=3–6y | | 2s+14=30 | | 11=c/2+5 | | -5h-24=-4(h+9) | | -36=-6u+(u-7) | | 18-3/4k=5/4k | | 6=a(12-0)^2+-3 | | 39=o*60 | | 13-4t=1-t | | 7t+6=12t+10 | | 3x+-1=×+9 | | 6(x-6)+4x=2x+12 |