If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/2(2x+9)=1/5(10x-5)
We move all terms to the left:
1/2(2x+9)-(1/5(10x-5))=0
Domain of the equation: 2(2x+9)!=0
x∈R
Domain of the equation: 5(10x-5))!=0We calculate fractions
x∈R
(5x1/(2(2x+9)*5(10x-5)))+(-2x2/(2(2x+9)*5(10x-5)))=0
We calculate terms in parentheses: +(5x1/(2(2x+9)*5(10x-5))), so:
5x1/(2(2x+9)*5(10x-5))
We multiply all the terms by the denominator
5x1
We add all the numbers together, and all the variables
5x
Back to the equation:
+(5x)
We calculate terms in parentheses: +(-2x2/(2(2x+9)*5(10x-5))), so:We get rid of parentheses
-2x2/(2(2x+9)*5(10x-5))
We multiply all the terms by the denominator
-2x2
We add all the numbers together, and all the variables
-2x^2
Back to the equation:
+(-2x^2)
-2x^2+5x=0
a = -2; b = 5; c = 0;
Δ = b2-4ac
Δ = 52-4·(-2)·0
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-5}{2*-2}=\frac{-10}{-4} =2+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+5}{2*-2}=\frac{0}{-4} =0 $
| 2/6n=6/7 | | 5+6-2x=3+4 | | 3t-18=4{-3-3/4t) | | a÷3+2=10 | | 2x-1/9=-5 | | 1-8x+12=5 | | 1-5-x/5+x=3/4 | | 6-3m=2m-2m | | 7x+8(x+1/4)=3(6x-9 | | 5x+6=6x-20 | | x^2+(-5x+8)^2-8x-2(-5x+8)=0 | | 1=3x= | | b+6-6b=36 | | 9.33+2.33=y | | 9x+40=157 | | 3x-5=4-2(x-3) | | 4x-13x1+3x=25 | | (3x+1)(4x+1)=40 | | -5+27x=11x-5=180 | | -3(8x+3)-2(4-23x)=3(2+7x) | | (-241)+y=12 | | 5/13=t-6 | | 2x=12/5 | | 8k-1k=0 | | 13x+2+14x-4=180 | | 19-13l=-17l-5 | | 3(3x+1)=4x-2 | | 15x-34=0 | | 4x8-9=3 | | 7x+8(x+1.4)=3(6x-9) | | 15=-3/5w | | y=2(1.75)+4 |