If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/2(2x-4)=1/9(18x+9)
We move all terms to the left:
1/2(2x-4)-(1/9(18x+9))=0
Domain of the equation: 2(2x-4)!=0
x∈R
Domain of the equation: 9(18x+9))!=0We calculate fractions
x∈R
(9x1/(2(2x-4)*9(18x+9)))+(-2x2/(2(2x-4)*9(18x+9)))=0
We calculate terms in parentheses: +(9x1/(2(2x-4)*9(18x+9))), so:
9x1/(2(2x-4)*9(18x+9))
We multiply all the terms by the denominator
9x1
We add all the numbers together, and all the variables
9x
Back to the equation:
+(9x)
We calculate terms in parentheses: +(-2x2/(2(2x-4)*9(18x+9))), so:We get rid of parentheses
-2x2/(2(2x-4)*9(18x+9))
We multiply all the terms by the denominator
-2x2
We add all the numbers together, and all the variables
-2x^2
Back to the equation:
+(-2x^2)
-2x^2+9x=0
a = -2; b = 9; c = 0;
Δ = b2-4ac
Δ = 92-4·(-2)·0
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-9}{2*-2}=\frac{-18}{-4} =4+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+9}{2*-2}=\frac{0}{-4} =0 $
| 2x-6+2x-6+x=53 | | 5.75=2^k | | 6x-7+2x-3=62 | | 5x-7+5x-7+x=96 | | 3x+5-5x+1=180 | | 4u+12=-4(u-5) | | 3x+5+5x+1=180 | | 61+3x=4 | | 1x-2.5=4x-1 | | -1/2(3x-12)+4=13x-3x | | -a/16+106=99 | | x+5+2x+10=180 | | x+11=4x+ | | -2+2w=-10 | | 17+x=5x-3 | | 14=u/5+4 | | 80+220x=520 | | 80+220x=555 | | 80+220x=500 | | 5x-20=3x+4.5 | | 80+220x=5 | | c-132=108-11c | | t+10=30 | | 4=−2n+6n | | -2(4x+3)=-342 | | 4.3x-1.6=2.3+5.2 | | x=-5-20 | | -x-9-20=-27 | | x2+2x+2=56.6 | | 18+3u=39 | | x+5+37=96 | | 3x+4.5=7.2-6x |