1/2(6a)+6a+a=180

Simple and best practice solution for 1/2(6a)+6a+a=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/2(6a)+6a+a=180 equation:



1/2(6a)+6a+a=180
We move all terms to the left:
1/2(6a)+6a+a-(180)=0
Domain of the equation: 26a!=0
a!=0/26
a!=0
a∈R
We add all the numbers together, and all the variables
7a+1/26a-180=0
We multiply all the terms by the denominator
7a*26a-180*26a+1=0
Wy multiply elements
182a^2-4680a+1=0
a = 182; b = -4680; c = +1;
Δ = b2-4ac
Δ = -46802-4·182·1
Δ = 21901672
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{21901672}=\sqrt{4*5475418}=\sqrt{4}*\sqrt{5475418}=2\sqrt{5475418}$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4680)-2\sqrt{5475418}}{2*182}=\frac{4680-2\sqrt{5475418}}{364} $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4680)+2\sqrt{5475418}}{2*182}=\frac{4680+2\sqrt{5475418}}{364} $

See similar equations:

| !/2(6a)+6a+a=180 | | c=3✖2 | | 27=t+2t= | | (7x+13)+127=180 | | 2t-5+2=-6-6t | | 20-5n=90 | | 1/5y=18 | | z+148/9=26 | | H(t)=-5t2+45t+50 | | −3(x−2)+5(2x+1)=−3 | | 6x-11=-2x+1 | | y12=144 | | 5=13-d= | | 6=m+2.4 | | 6-2y+4y=20 | | 3.−3(x−2)+5(2x+1)=−3 | | z-32=100 | | 2(x^2-2x)+20=180 | | 8(x-7)=-80 | | 4u-3=-2u | | n=√4n+5 | | Y+6y+34=0 | | 42-32+z=18 | | 5+7x+2=5-14 | | –k−9=8k | | 35=4m+m= | | c➗2=2c= | | ​4x+6+3x=27 | | w+18=32 | | 8y+9-7y=13 | | 4/x=0.2/0.55 | | q+4/3=2 |

Equations solver categories