1/2(z)+(-1)=5-z

Simple and best practice solution for 1/2(z)+(-1)=5-z equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/2(z)+(-1)=5-z equation:



1/2(z)+(-1)=5-z
We move all terms to the left:
1/2(z)+(-1)-(5-z)=0
Domain of the equation: 2z!=0
z!=0/2
z!=0
z∈R
We add all the numbers together, and all the variables
1/2z-(-1z+5)+(-1)=0
We add all the numbers together, and all the variables
1/2z-(-1z+5)-1=0
We get rid of parentheses
1/2z+1z-5-1=0
We multiply all the terms by the denominator
1z*2z-5*2z-1*2z+1=0
Wy multiply elements
2z^2-10z-2z+1=0
We add all the numbers together, and all the variables
2z^2-12z+1=0
a = 2; b = -12; c = +1;
Δ = b2-4ac
Δ = -122-4·2·1
Δ = 136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{136}=\sqrt{4*34}=\sqrt{4}*\sqrt{34}=2\sqrt{34}$
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-2\sqrt{34}}{2*2}=\frac{12-2\sqrt{34}}{4} $
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+2\sqrt{34}}{2*2}=\frac{12+2\sqrt{34}}{4} $

See similar equations:

| -8+5x=5+4x-x+1 | | 1/2z+(-1)=5-z | | 1=7+4x | | 3x+22÷5=2 | | 14n-6n=16 | | y+8/3=y-5/2 | | -1(x-8)-3=3x+5-4x | | (y+8)/3=(y-5)/2 | | P+1=1-p | | 9x-(5x+8)=5x-40 | | (4x+7)=(7x-35) | | 9-9x+(-30)=2x+6 | | -12-28a=-15 | | -3(x+12)=72 | | 60=x8 | | 2x+x+6=30 | | -x/4+31=44 | | 36,000+4,000x=51000+1,500x | | (x+10)+80=180 | | 3-(x+2)=-3x-6 | | 3f-21=-13 | | 5/4g+9/2=4/5+1/4g | | 0.03(3-7x)-0.02(1-x)=0.64 | | 2.25=d/48 | | 6•2/3=x | | 60r=4 | | 50x+5=25x+6 | | 5/12×6=a | | 7x-9=72 | | 2(16-x)=-2x+2 | | 9x-5=20x-9 | | 2x(16-x)=-2x+2 |

Equations solver categories