1/2*3x+x=120

Simple and best practice solution for 1/2*3x+x=120 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/2*3x+x=120 equation:



1/2*3x+x=120
We move all terms to the left:
1/2*3x+x-(120)=0
Domain of the equation: 2*3x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
x+1/2*3x-120=0
We multiply all the terms by the denominator
x*2*3x-120*2*3x+1=0
Wy multiply elements
6x^2*3-720x*3+1=0
Wy multiply elements
18x^2-2160x+1=0
a = 18; b = -2160; c = +1;
Δ = b2-4ac
Δ = -21602-4·18·1
Δ = 4665528
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{4665528}=\sqrt{36*129598}=\sqrt{36}*\sqrt{129598}=6\sqrt{129598}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2160)-6\sqrt{129598}}{2*18}=\frac{2160-6\sqrt{129598}}{36} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2160)+6\sqrt{129598}}{2*18}=\frac{2160+6\sqrt{129598}}{36} $

See similar equations:

| 3b+2=20-3b | | 10x=96−2x | | 4x−11=5 | | 2x−4=14 | | 1/9x-(5x-1)=7/6x-(2x-1) | | x(3x+1)=80 | | 2x−7=3 | | 30(3/100)+20y=2 | | 9x−20=52 | | 2x−12=8 | | 900+20y=2 | | 5x+3-3x=3x+2-3x | | 4x+5=-11x-55 | | 7x+9=27+5x | | 6x+7=37+3x | | 5m+7=27m= | | (2x)^2/(0,200-x)^2=8,32 | | n=7140n | | 5(p-1)=2 | | x-7/x-2=5/4 | | 4x^2/2-x=1,32 | | 6x=8=62 | | F(0)=3x/2x^2+3 | | 2(3a-7)=12a+26 | | 10x+16=88 | | 3/4=36/x | | 15+3x=7x-17= | | 36/x=3/4 | | 3x+1•x=80 | | 2^-16x-12=2^5x | | 5(x+7)=-16 | | 3m+5=32m= |

Equations solver categories