1/2*4a+10=2a+

Simple and best practice solution for 1/2*4a+10=2a+ equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/2*4a+10=2a+ equation:



1/2*4a+10=2a+
We move all terms to the left:
1/2*4a+10-(2a+)=0
Domain of the equation: 2*4a!=0
a!=0/1
a!=0
a∈R
We add all the numbers together, and all the variables
1/2*4a-(+2a)+10=0
We get rid of parentheses
1/2*4a-2a+10=0
We multiply all the terms by the denominator
-2a*2*4a+10*2*4a+1=0
Wy multiply elements
-16a^2*4+80a*4+1=0
Wy multiply elements
-64a^2+320a+1=0
a = -64; b = 320; c = +1;
Δ = b2-4ac
Δ = 3202-4·(-64)·1
Δ = 102656
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{102656}=\sqrt{256*401}=\sqrt{256}*\sqrt{401}=16\sqrt{401}$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(320)-16\sqrt{401}}{2*-64}=\frac{-320-16\sqrt{401}}{-128} $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(320)+16\sqrt{401}}{2*-64}=\frac{-320+16\sqrt{401}}{-128} $

See similar equations:

| 6+5=2x-7x | | -6+7k=36 | | 1/n+3=7 | | 4(x+3)+5x=30 | | 1*1+10=+10x | | 4=y/3-11 | | 3/5x-9=-24 | | 15s+s-7s+-3s+-15s=16 | | 2a+3(22-3a)=31 | | (4x+17)(2x+7)=180 | | (y+38)+(3y+12)+106+84=180 | | 16=1/2(4(3+b2) | | 13b-9b-4b+2b=10 | | 8*3x+1=+8 | | 4(x-5=25 | | 13b−9b−4b+2b=10 | | 9x+4(x-5)=-11+10x | | 87/52.75=x | | 1/5(10x+20)=10 | | x=76.31=164.89 | | -7=-7c | | 4(x+11)=76 | | -24x+15x=3(-12-4x) | | 15x-16=15x-24 | | 15x-6=15x-24 | | 2x+5+7x=39 | | 2n+6+n=18 | | X-3x+9=36+× | | 1.1x+2.35=-8,1 | | 4y-1=3y+4 | | 14y+-17=18 | | d+26=28 |

Equations solver categories