1/2*4x-1*3x=180

Simple and best practice solution for 1/2*4x-1*3x=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/2*4x-1*3x=180 equation:



1/2*4x-1*3x=180
We move all terms to the left:
1/2*4x-1*3x-(180)=0
Domain of the equation: 2*4x!=0
x!=0/1
x!=0
x∈R
Wy multiply elements
1/2*4x-3x-180=0
We multiply all the terms by the denominator
-3x*2*4x-180*2*4x+1=0
Wy multiply elements
-24x^2*4-1440x*4+1=0
Wy multiply elements
-96x^2-5760x+1=0
a = -96; b = -5760; c = +1;
Δ = b2-4ac
Δ = -57602-4·(-96)·1
Δ = 33177984
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{33177984}=\sqrt{64*518406}=\sqrt{64}*\sqrt{518406}=8\sqrt{518406}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5760)-8\sqrt{518406}}{2*-96}=\frac{5760-8\sqrt{518406}}{-192} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5760)+8\sqrt{518406}}{2*-96}=\frac{5760+8\sqrt{518406}}{-192} $

See similar equations:

| 9x+11=14+8x | | 3x-2(x+6)=37 | | 12=92-16b | | -3(x-8)+(x+9)=2-(x-9) | | 6x+1+3x+6+2x+8=18 | | 3s+5(2s+4)=85 | | 28=14e+14 | | 3x-8=-7×+18 | | −7=7s+28 | | 5(14+x)=3x | | u/5=-31 | | -40=-u/7 | | 3x-2+4x=54 | | 0.35w=0.15 | | −3w−4=w+3 | | B+7+6b=39 | | (5x-20)°=(3x+14)° | | 57+x+50+x+x+87=180 | | 17x+9=21x+12-4x | | 2m÷4=16 | | 3+n=54 | | (3b-4)4=2(b-5) | | r^2-8r-28=0 | | 16-4(3x+4)=8 | | 10x20=50 | | 5f-7f+f=f | | 15x-2=4x+5 | | C(x)=0.08x+15.50 | | (15x-2)=(4x+5) | | -0.5(n+2)²=0 | | 30x-12=288 | | -6p-19=17-12p |

Equations solver categories