If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/2k+2=5+5/6k
We move all terms to the left:
1/2k+2-(5+5/6k)=0
Domain of the equation: 2k!=0
k!=0/2
k!=0
k∈R
Domain of the equation: 6k)!=0We add all the numbers together, and all the variables
k!=0/1
k!=0
k∈R
1/2k-(5/6k+5)+2=0
We get rid of parentheses
1/2k-5/6k-5+2=0
We calculate fractions
6k/12k^2+(-10k)/12k^2-5+2=0
We add all the numbers together, and all the variables
6k/12k^2+(-10k)/12k^2-3=0
We multiply all the terms by the denominator
6k+(-10k)-3*12k^2=0
Wy multiply elements
-36k^2+6k+(-10k)=0
We get rid of parentheses
-36k^2+6k-10k=0
We add all the numbers together, and all the variables
-36k^2-4k=0
a = -36; b = -4; c = 0;
Δ = b2-4ac
Δ = -42-4·(-36)·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4}{2*-36}=\frac{0}{-72} =0 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4}{2*-36}=\frac{8}{-72} =-1/9 $
| 3q-12/4=2 | | 3(q-4/3)=2 | | 3a-47+a-11+3a+33+30+2a-45+a-10=360 | | 6x+17-8x=13-2x+4 | | 2w-50+2w-50+2w-50+2w-46+w+31+30=360 | | 5^x=0.125 | | 2(4a+)=3a | | -2x+3=4x-5 | | 64+70+52+u-4+u+17+u-9+32=360 | | -21/7*p=-3 | | 4y+2-y=10 | | 3x+4=2(2x-3) | | 142+146+u+26+146+u+39+2u-35+u+38+128=1080 | | 3a-12=180 | | 2=r÷4-2 | | 16=11w-3w | | 12v=63+3v | | 12-3a=180 | | -4x-11=17-8x | | a+a-4a+3=0 | | 3r-8=7r+2 | | 6(n+-2)=-72 | | y+58;=1 | | 5b+6b+39+3b+48+2b+30+9b-27=540 | | -.04x^2+1.44x+1.04=12 | | -.04x^2+1.44x=10.96 | | -3+-6x=13+2x | | 5b+6b+39+3b-48+2b=30+9b-27=540 | | x+3/4=3 | | 10x+75=265 | | -.04x^2+1.44x=0 | | 4.2*10^(2x-5)=6000 |