1/2+x(x-15)+1/2x+(x-25)+100=540

Simple and best practice solution for 1/2+x(x-15)+1/2x+(x-25)+100=540 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/2+x(x-15)+1/2x+(x-25)+100=540 equation:



1/2+x(x-15)+1/2x+(x-25)+100=540
We move all terms to the left:
1/2+x(x-15)+1/2x+(x-25)+100-(540)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
determiningTheFunctionDomain x(x-15)+1/2x+(x-25)+100-540+1/2=0
We add all the numbers together, and all the variables
x(x-15)+1/2x+(x-25)-440+1/2=0
We multiply parentheses
x^2-15x+1/2x+(x-25)-440+1/2=0
We get rid of parentheses
x^2-15x+1/2x+x-25-440+1/2=0
We calculate fractions
x^2-15x+x-25-440=0
We add all the numbers together, and all the variables
x^2-14x-465=0
a = 1; b = -14; c = -465;
Δ = b2-4ac
Δ = -142-4·1·(-465)
Δ = 2056
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2056}=\sqrt{4*514}=\sqrt{4}*\sqrt{514}=2\sqrt{514}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-2\sqrt{514}}{2*1}=\frac{14-2\sqrt{514}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+2\sqrt{514}}{2*1}=\frac{14+2\sqrt{514}}{2} $

See similar equations:

| M=9m+4(12-m) | | x+.05x=46000 | | N+12=m | | 8+b/5=5 | | m/5+4=6 | | -x+23=x+5 | | 3^x*9=√3 | | 3x+4=-13 | | 50x=300(x-3) | | 6+r/3=1 | | 3+x/4=-3 | | 5/3x-2=x+6 | | 3x+2=×-8 | | x+.05x=37000 | | -3+n/2=-3 | | 3y÷2+1=7 | | -3x=-1.2 | | 3(v+1)+11=-2(v+13) | | 20=r=11 | | 1/3*x=x-22 | | Y=-24+2(y-9) | | 6y^2-37y-35=0 | | 2/5x=6/5=-6/5 | | -3+2x​=-x​+6 | | 4(x+1)+6x=4x-(5+2x)+1 | | 3y/2+1=7 | | 6d=11/2-2d-13/2 | | 1/3*3=x-22 | | -13n=-39 | | 1/3*3=x22 | | 2/3(x+4)=-6 | | -8+a=-10 |

Equations solver categories