If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/2-1/m+2=1/2m+4
We move all terms to the left:
1/2-1/m+2-(1/2m+4)=0
Domain of the equation: m!=0
m∈R
Domain of the equation: 2m+4)!=0We get rid of parentheses
m∈R
-1/m-1/2m-4+2+1/2=0
We calculate fractions
(-8m)/8m^2+(-m)/8m^2+m/8m^2-4+2=0
We add all the numbers together, and all the variables
(-8m)/8m^2+(-1m)/8m^2+m/8m^2-4+2=0
We add all the numbers together, and all the variables
(-8m)/8m^2+(-1m)/8m^2+m/8m^2-2=0
We multiply all the terms by the denominator
(-8m)+(-1m)+m-2*8m^2=0
We add all the numbers together, and all the variables
m+(-8m)+(-1m)-2*8m^2=0
Wy multiply elements
-16m^2+m+(-8m)+(-1m)=0
We get rid of parentheses
-16m^2+m-8m-1m=0
We add all the numbers together, and all the variables
-16m^2-8m=0
a = -16; b = -8; c = 0;
Δ = b2-4ac
Δ = -82-4·(-16)·0
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-8}{2*-16}=\frac{0}{-32} =0 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+8}{2*-16}=\frac{16}{-32} =-1/2 $
| 16+5=2-x | | 3z/10+7=8 | | 10p=-10 | | -8x+5+3x=45 | | -5(7+3x)=3x+1 | | 7x+11+90=180 | | -9=y/12 | | n/27=4/6 | | x/2-7=4+4 | | 3.9x+0.7=8.66 | | n–52=12 | | 3+25=x+6 | | -29+x=18 | | 0.8x=-0.2x+-1.2 | | 29+x=-25 | | 10x-4=-10x+2 | | x7-20=-18 | | A=5+0.2(n-1) | | 0.6x100=0.06 | | 10=k90 | | 14d=54 | | 2m+7=5m-6 | | k+22=27 | | x=11x+35 | | p20=5p | | 3.7–(5x–13)=-25 | | 3(2x+4)=x-5+4x-1 | | 42=-3t-4 | | -10x-15=-10x+5 | | -2d+4=8(d-2)-5d | | h-(-2.22)=-7.815 | | 60-20=5x |