If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/212m-10=4m+14-2m
We move all terms to the left:
1/212m-10-(4m+14-2m)=0
Domain of the equation: 212m!=0We add all the numbers together, and all the variables
m!=0/212
m!=0
m∈R
1/212m-(2m+14)-10=0
We get rid of parentheses
1/212m-2m-14-10=0
We multiply all the terms by the denominator
-2m*212m-14*212m-10*212m+1=0
Wy multiply elements
-424m^2-2968m-2120m+1=0
We add all the numbers together, and all the variables
-424m^2-5088m+1=0
a = -424; b = -5088; c = +1;
Δ = b2-4ac
Δ = -50882-4·(-424)·1
Δ = 25889440
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{25889440}=\sqrt{16*1618090}=\sqrt{16}*\sqrt{1618090}=4\sqrt{1618090}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5088)-4\sqrt{1618090}}{2*-424}=\frac{5088-4\sqrt{1618090}}{-848} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5088)+4\sqrt{1618090}}{2*-424}=\frac{5088+4\sqrt{1618090}}{-848} $
| M1=2x+44 | | 755/42=n | | 34=3(v-2)-7 | | 6d+5=3(2d+2) | | -16-7(2a+30=23-2a | | 8=2x+6x-128=2x+6x−12 | | 13d=-247 | | 2(r+5)=10 | | -3x-3+4x=-3 | | 302/105=n | | 12 | | -2(2x-4)+6x=6+2(7x-7) | | -8=-p/15 | | x3=121 | | –9x+2=56 | | 110-50/5=x | | 6g-3=9g-33 | | 5x+2+4x+7=90 | | 12 | | 3x–1=5 | | 3x+7=16x= | | -7=-h/12 | | -18=12-x | | 8-5x=-7x+4 | | 12 | | -108=26n-6) | | f+f+f=9 | | 11/10-(5x-2)= | | 2-6n=-88 | | 2=1/5(8x-15 | | 2(b-6)=14 | | 10x+18=6x-20 |