If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/22*e=25
We move all terms to the left:
1/22*e-(25)=0
Domain of the equation: 22*e!=0We multiply all the terms by the denominator
e!=0/1
e!=0
e∈R
-25*22*e+1=0
Wy multiply elements
-550e*e+1=0
Wy multiply elements
-550e^2+1=0
a = -550; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-550)·1
Δ = 2200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$e_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$e_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2200}=\sqrt{100*22}=\sqrt{100}*\sqrt{22}=10\sqrt{22}$$e_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{22}}{2*-550}=\frac{0-10\sqrt{22}}{-1100} =-\frac{10\sqrt{22}}{-1100} =-\frac{\sqrt{22}}{-110} $$e_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{22}}{2*-550}=\frac{0+10\sqrt{22}}{-1100} =\frac{10\sqrt{22}}{-1100} =\frac{\sqrt{22}}{-110} $
| 16*d=320 | | 7*a=112 | | r*12=144 | | 1/23*w=18 | | 25*t=550 | | 1/7*q=11 | | n*22=484 | | -2k+7=25 | | 1/21*f=13 | | f*7=168 | | 15*d=120 | | 10*r=230 | | 1/9*i=13 | | 13*d=195 | | 4x+7=+46 | | 4-2(x-7)x=3 | | 6(2y-1)-2(3y=9 | | d*6=132 | | k*20=140 | | 2u+4.6=33.2 | | k(20)=140 | | 13x+6-7+90=180 | | 2u+5.2=33.2 | | x+32=2x-17 | | -15-5y+2y=9 | | (4x+5)+(5×22)=180 | | -13x-7=3+11x | | w*19=418 | | 12w=20 | | t*16=352 | | n*13=325 | | 14+2x+5x=-7 |