If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/298n+6)=4n+3
We move all terms to the left:
1/298n+6)-(4n+3)=0
Domain of the equation: 298n!=0We add all the numbers together, and all the variables
n!=0/298
n!=0
n∈R
1/298n+6)-(4n=0
We multiply all the terms by the denominator
-4n*298n+1+6=0
We add all the numbers together, and all the variables
-4n*298n+7=0
Wy multiply elements
-1192n^2+7=0
a = -1192; b = 0; c = +7;
Δ = b2-4ac
Δ = 02-4·(-1192)·7
Δ = 33376
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{33376}=\sqrt{16*2086}=\sqrt{16}*\sqrt{2086}=4\sqrt{2086}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{2086}}{2*-1192}=\frac{0-4\sqrt{2086}}{-2384} =-\frac{4\sqrt{2086}}{-2384} =-\frac{\sqrt{2086}}{-596} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{2086}}{2*-1192}=\frac{0+4\sqrt{2086}}{-2384} =\frac{4\sqrt{2086}}{-2384} =\frac{\sqrt{2086}}{-596} $
| 11k-10k=17 | | 4.2+z=11.2/6.7.8 | | 14(v+4)-2v=4(3v+3)-20 | | 5p-5p+4p=4 | | 5h-2(3/2h+4=10) | | 6t+4t+t-9t-t=18 | | 1/3(z+4)-6=2/3(5-z)= | | 2(6-2x)+6=-9x-6+5x | | 2x+4-3x=-1 | | 15r+r-13+r=20 | | 8r-7=7 | | Nx3=-4 | | (-4+5b)=16 | | 3x+(2-4x)=0 | | d+58=180 | | 12*y=72 | | 3-2g=- | | 2x+5+7x-14=180 | | -1.3+y/7=18.8 | | 20x2-6x=-8 | | 6w+5=17 | | g÷2=4 | | 3.4x-19.1=9.1 | | -8x-63=0.25-3 | | a+58=180 | | 243=3^x+3 | | 2,3d=6 | | 3t^2+14t+16=0 | | 22=11/12a | | 10=2/5w | | 49=4r+9 | | 5+-2n=91+1 |