1/2a-5+7/a=2/a+5

Simple and best practice solution for 1/2a-5+7/a=2/a+5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/2a-5+7/a=2/a+5 equation:



1/2a-5+7/a=2/a+5
We move all terms to the left:
1/2a-5+7/a-(2/a+5)=0
Domain of the equation: 2a!=0
a!=0/2
a!=0
a∈R
Domain of the equation: a!=0
a∈R
Domain of the equation: a+5)!=0
a∈R
We get rid of parentheses
1/2a+7/a-2/a-5-5=0
We calculate fractions
a/2a^2+(-4a+7)/2a^2-5-5=0
We add all the numbers together, and all the variables
a/2a^2+(-4a+7)/2a^2-10=0
We multiply all the terms by the denominator
a+(-4a+7)-10*2a^2=0
Wy multiply elements
-20a^2+a+(-4a+7)=0
We get rid of parentheses
-20a^2+a-4a+7=0
We add all the numbers together, and all the variables
-20a^2-3a+7=0
a = -20; b = -3; c = +7;
Δ = b2-4ac
Δ = -32-4·(-20)·7
Δ = 569
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-\sqrt{569}}{2*-20}=\frac{3-\sqrt{569}}{-40} $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+\sqrt{569}}{2*-20}=\frac{3+\sqrt{569}}{-40} $

See similar equations:

| (7x+24)+72=180​ | | 144=4x-27 | | k=1512 | | 55+x=x+89 | | 4x–3x=5x+31–5x | | 12n=n^2+19 | | x(x+18)=3.5(3.5+14.5) | | x/9+8=1x= | | N=0p | | 2(5c-3)-1=8c+1 | | N=-1p | | 13.5+2y=27 | | -11+4(5x-7x)=-29 | | 54-x=3x*8 | | 54-x=3x8 | | 15+x=7+25-8 | | 0=2x^2-25/8-x | | 4.6/20.1=y/44.2 | | x+12=x-14 | | 4+t=5t | | 5*100=y*250 | | 2(g+6)=-2 | | 5x100=Yx250 | | x^2=5.63 | | 35=1.8y+32 | | n+21/4=-41/2 | | y+6/y=5/4 | | 16x-38=16x-38 | | 9=4g-7 | | k/4+16=20 | | 3w+-9=0 | | -3(6+-8)+-5=9(b+2)+1 |

Equations solver categories