1/2b-1/3b=5/42

Simple and best practice solution for 1/2b-1/3b=5/42 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/2b-1/3b=5/42 equation:



1/2b-1/3b=5/42
We move all terms to the left:
1/2b-1/3b-(5/42)=0
Domain of the equation: 2b!=0
b!=0/2
b!=0
b∈R
Domain of the equation: 3b!=0
b!=0/3
b!=0
b∈R
We add all the numbers together, and all the variables
1/2b-1/3b-(+5/42)=0
We get rid of parentheses
1/2b-1/3b-5/42=0
We calculate fractions
(-90b^2)/1008b^2+504b/1008b^2+(-336b)/1008b^2=0
We multiply all the terms by the denominator
(-90b^2)+504b+(-336b)=0
We get rid of parentheses
-90b^2+504b-336b=0
We add all the numbers together, and all the variables
-90b^2+168b=0
a = -90; b = 168; c = 0;
Δ = b2-4ac
Δ = 1682-4·(-90)·0
Δ = 28224
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{28224}=168$
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(168)-168}{2*-90}=\frac{-336}{-180} =1+13/15 $
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(168)+168}{2*-90}=\frac{0}{-180} =0 $

See similar equations:

| 5(x-1)+1=2x+3(-1+x) | | 38.1=5n-1 | | (3w-5)/4=10 | | 10.9=3n-2 | | 23=x/5+4 | | 3(x-1)/4=3(x+2)/7 | | -5/2x+3/4x=-7/4 | | 65=−7d+9 | | -4x=3x-70 | | 58-2m=42 | | 18x+3=93 | | 4/5p=-10 | | -3(u+6)=2u-28 | | m6-3=8 | | 180+60x=950 | | 4x=9x-55 | | 3x-5=9x+10 | | 3/4r=3(3/8) | | -10-6v=10-4-8v | | |5x+1|-11=-4 | | -7j-10=-2j | | 7x+7=-8+4x+24 | | 10+4m=-4m-6 | | -4(x+3)+5(x-1)=18 | | 17=3(x+5)=8 | | -9-9m=-2-10m | | 0.1(y-1)+0.16y=0.12y-1.5 | | 5(4x-2)+x+2=32 | | 4y=10y-6 | | -9b-7=-25 | | 4g+12=40 | | -3x+1=1-1x |

Equations solver categories