1/2g-4=2g-1/2g+4

Simple and best practice solution for 1/2g-4=2g-1/2g+4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/2g-4=2g-1/2g+4 equation:



1/2g-4=2g-1/2g+4
We move all terms to the left:
1/2g-4-(2g-1/2g+4)=0
Domain of the equation: 2g!=0
g!=0/2
g!=0
g∈R
Domain of the equation: 2g+4)!=0
g∈R
We get rid of parentheses
1/2g-2g+1/2g-4-4=0
We multiply all the terms by the denominator
-2g*2g-4*2g-4*2g+1+1=0
We add all the numbers together, and all the variables
-2g*2g-4*2g-4*2g+2=0
Wy multiply elements
-4g^2-8g-8g+2=0
We add all the numbers together, and all the variables
-4g^2-16g+2=0
a = -4; b = -16; c = +2;
Δ = b2-4ac
Δ = -162-4·(-4)·2
Δ = 288
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{288}=\sqrt{144*2}=\sqrt{144}*\sqrt{2}=12\sqrt{2}$
$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-12\sqrt{2}}{2*-4}=\frac{16-12\sqrt{2}}{-8} $
$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+12\sqrt{2}}{2*-4}=\frac{16+12\sqrt{2}}{-8} $

See similar equations:

| 4e-19=-4(e+4) | | 2x+8+4x=30+20 | | 7g-33=15 | | 45+135+x+135+45+3x=180 | | 12x-9=57 | | ×+4+4x-8+7x-35=180 | | 5+2x-2+4x=33 | | 34-2x=6-2x | | 13+51x=16+48x | | X+6+5x-12+7x-486=180 | | 129+2x=95+3x | | 26+1x=14x | | 42+21x=46+20x | | 9y-5=8y+11 | | 3(2x-10)=4(5x+10) | | 3(2x+10)=4(5x+10) | | 12/10=20/x | | 3x+12-4=-17 | | 2(3x+4)=x+10 | | 15x=25x2+2 | | 3x+12-4=17 | | 5x+1=2x-12 | | 5x=2x÷6 | | 81+3x=13+4x | | 3/7=x/100 | | 2(4a+1)=-3a | | -2=48-3y | | 11+16k=26+10k | | x+15-84=78+122345578 | | 1/3x+10=30 | | 12p+3=36 | | .7(h+3)+1.6=17 |

Equations solver categories