1/2h=6;h=2

Simple and best practice solution for 1/2h=6;h=2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/2h=6;h=2 equation:



1/2h=6h=2
We move all terms to the left:
1/2h-(6h)=0
Domain of the equation: 2h!=0
h!=0/2
h!=0
h∈R
We add all the numbers together, and all the variables
-6h+1/2h=0
We multiply all the terms by the denominator
-6h*2h+1=0
Wy multiply elements
-12h^2+1=0
a = -12; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-12)·1
Δ = 48
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{48}=\sqrt{16*3}=\sqrt{16}*\sqrt{3}=4\sqrt{3}$
$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{3}}{2*-12}=\frac{0-4\sqrt{3}}{-24} =-\frac{4\sqrt{3}}{-24} =-\frac{\sqrt{3}}{-6} $
$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{3}}{2*-12}=\frac{0+4\sqrt{3}}{-24} =\frac{4\sqrt{3}}{-24} =\frac{\sqrt{3}}{-6} $

See similar equations:

| s=-12+76 | | -29=-3+4x | | 11x+1+20x-1+30x-3=180 | | 5c=16.5=13.5=10c | | c=5(4.5)+150 | | 6/x+5=14 | | 2.3z+5+3*3=3(z-7) | | 27=m^-3 | | 5x^2-7x-48=4 | | 3*11^x=2 | | 0=-8x-10 | | x^2-2x+312=0 | | 2x+10+4x-34+4x-36=180 | | 3x-1/8x=23 | | n/5-7=10 | | 3/7p=5 | | (4w+9)(5-w)=0 | | 4n^2+2n+4=0 | | -(x-4)=3x | | 3y+9=-3(2y+5) | | 29.5-5.5=-7.5(3x+3.5) | | 3x+10=10x-4 | | 2x+-14=26 | | 1/3a-1=11/3-4a | | 1/2z+6=32(z+6) | | 2n^2-5n-117=0 | | 1/2z+6=3/2(2+6) | | 4x(x-6)-13=(4x-5)(x-3) | | x+12+x+5+2x-29=180 | | 3=3.3x​ | | 4(2x−2)+2=4(x−2) | | 4(2x−2)+2=4(x−2)4⁢(2⁢x-2)+2=4⁢(x-2) |

Equations solver categories