1/2k+3=1/3k-10

Simple and best practice solution for 1/2k+3=1/3k-10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/2k+3=1/3k-10 equation:



1/2k+3=1/3k-10
We move all terms to the left:
1/2k+3-(1/3k-10)=0
Domain of the equation: 2k!=0
k!=0/2
k!=0
k∈R
Domain of the equation: 3k-10)!=0
k∈R
We get rid of parentheses
1/2k-1/3k+10+3=0
We calculate fractions
3k/6k^2+(-2k)/6k^2+10+3=0
We add all the numbers together, and all the variables
3k/6k^2+(-2k)/6k^2+13=0
We multiply all the terms by the denominator
3k+(-2k)+13*6k^2=0
Wy multiply elements
78k^2+3k+(-2k)=0
We get rid of parentheses
78k^2+3k-2k=0
We add all the numbers together, and all the variables
78k^2+k=0
a = 78; b = 1; c = 0;
Δ = b2-4ac
Δ = 12-4·78·0
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1}=1$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-1}{2*78}=\frac{-2}{156} =-1/78 $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+1}{2*78}=\frac{0}{156} =0 $

See similar equations:

| 9d-2=11d+5d | | 4u-4.8=7.6 | | 6z+12z-18-5z=12z+4z-11+2 | | 3y+8=7y+10 | | 3x+9/4x-4=2 | | 2n=14-n | | 1+4(4p-3)=-91 | | 3x+7=5x–3 | | 2(3x+9)=-41+5 | | 5y-1/3=6 | | 9.06x+3.55(7x-4)=12.07x+0.5610 | | 9=6y+3 | | 7x/9-4=45 | | -4(x-3)+5(x+2)-8=x | | 10-a=a | | 5(h+6/5)=2 | | 11x-15=10x+13 | | -7+2x=4x-3 | | x=6(2x-3)=15 | | 20x+945=5145 | | -(g+-63)=-19 | | -110=-5(n+4) | | 3x+3=11+-1+2x | | a³=11 | | .7x+x=221 | | 2t+6=18 | | 8(4+3p)=176 | | -5+2t=5 | | 3x^2-36x=-42 | | (x/4)-(3/5)=(1/6x)-1 | | 3x+²=3⁴ | | (-612)÷36=n |

Equations solver categories