1/2k+4/k=k/k+2

Simple and best practice solution for 1/2k+4/k=k/k+2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/2k+4/k=k/k+2 equation:



1/2k+4/k=k/k+2
We move all terms to the left:
1/2k+4/k-(k/k+2)=0
Domain of the equation: 2k!=0
k!=0/2
k!=0
k∈R
Domain of the equation: k!=0
k∈R
Domain of the equation: k+2)!=0
k∈R
We get rid of parentheses
1/2k+4/k-k/k-2=0
Fractions to decimals
1/2k+4/k-2+1=0
We calculate fractions
k/2k^2+8k/2k^2-2+1=0
We add all the numbers together, and all the variables
k/2k^2+8k/2k^2-1=0
We multiply all the terms by the denominator
k+8k-1*2k^2=0
We add all the numbers together, and all the variables
9k-1*2k^2=0
Wy multiply elements
-2k^2+9k=0
a = -2; b = 9; c = 0;
Δ = b2-4ac
Δ = 92-4·(-2)·0
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{81}=9$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-9}{2*-2}=\frac{-18}{-4} =4+1/2 $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+9}{2*-2}=\frac{0}{-4} =0 $

See similar equations:

| 8-x=5x-40 | | 8-5x=-40-x | | x(x-10)=10 | | 3d*4=9 | | 31-6h=43 | | .x-58=42 | | 45+10r=68 | | 2.4(x-3)=0.6(3-2x( | | 1/5*(x-8)+4+x/4+x-1/7=7-23-x/5 | | 10a=408+7a | | 5e+4=45 | | 49^x-7^(x-1)-8=0 | | 7t^2-t-56=0 | | 3x=19+4x | | 12x-45=77 | | 68=9c/5 | | 7t+7=5(t-5) | | 5x+1/2(x-2)=-45 | | 3x1=c | | 6f+21=15 | | 3r+12=-2 | | 5(3a+4)=35 | | 86-2x=6 | | 6000=150x | | 3^(2^p)-12(3^p)+27=0 | | -4w=480 | | y=-1(2-3)^2+4 | | 8/9=1+1/8g | | 2x-7=3/x+93 | | (9x-14)+4x=90 | | 2x+(9x-6)=71 | | 232=-v+156 |

Equations solver categories