1/2k-6=3/7k+4

Simple and best practice solution for 1/2k-6=3/7k+4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/2k-6=3/7k+4 equation:



1/2k-6=3/7k+4
We move all terms to the left:
1/2k-6-(3/7k+4)=0
Domain of the equation: 2k!=0
k!=0/2
k!=0
k∈R
Domain of the equation: 7k+4)!=0
k∈R
We get rid of parentheses
1/2k-3/7k-4-6=0
We calculate fractions
7k/14k^2+(-6k)/14k^2-4-6=0
We add all the numbers together, and all the variables
7k/14k^2+(-6k)/14k^2-10=0
We multiply all the terms by the denominator
7k+(-6k)-10*14k^2=0
Wy multiply elements
-140k^2+7k+(-6k)=0
We get rid of parentheses
-140k^2+7k-6k=0
We add all the numbers together, and all the variables
-140k^2+k=0
a = -140; b = 1; c = 0;
Δ = b2-4ac
Δ = 12-4·(-140)·0
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1}=1$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-1}{2*-140}=\frac{-2}{-280} =1/140 $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+1}{2*-140}=\frac{0}{-280} =0 $

See similar equations:

| 4y+8=46-2y | | P=8x²-16x-4x+8 | | 5^-7x=6 | | (2y+4)=(3y-1) | | -0.05-4.6x=7.6x+11.17+3.6x | | 19x=-14+18x | | -13-9+2x=-x+17 | | 10x+20=-3x-19 | | 9-9x=-5x-7-2x | | 2+5-8x=-1-9x | | (3/4)=d=4(1/2) | | -96=6(r-8) | | -20=-2x=4 | | 0.06x+0.14(14000-x)=15000 | | 60=(m/3) | | F(x)=74.5 | | -10x-18=-3x-4 | | 8(4w+6)/3=0 | | -9x-16=-3x+2 | | -7x+13=-15x+5 | | 5n(3-1)=6n | | -7(2t-6)=-98 | | 5x+2=6+8 | | 4(10^2x)=40 | | y-9=63 | | 8+x+x+x=180 | | 8/11(n-10)=54 | | 12-8=3x+10 | | 5(3m-2)=42 | | (6x)^2+14x-40=0 | | 2x+0=6+3x | | 13x-9=19x16+x |

Equations solver categories