1/2m+4m=3m-5

Simple and best practice solution for 1/2m+4m=3m-5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/2m+4m=3m-5 equation:



1/2m+4m=3m-5
We move all terms to the left:
1/2m+4m-(3m-5)=0
Domain of the equation: 2m!=0
m!=0/2
m!=0
m∈R
We add all the numbers together, and all the variables
4m+1/2m-(3m-5)=0
We get rid of parentheses
4m+1/2m-3m+5=0
We multiply all the terms by the denominator
4m*2m-3m*2m+5*2m+1=0
Wy multiply elements
8m^2-6m^2+10m+1=0
We add all the numbers together, and all the variables
2m^2+10m+1=0
a = 2; b = 10; c = +1;
Δ = b2-4ac
Δ = 102-4·2·1
Δ = 92
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{92}=\sqrt{4*23}=\sqrt{4}*\sqrt{23}=2\sqrt{23}$
$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{23}}{2*2}=\frac{-10-2\sqrt{23}}{4} $
$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{23}}{2*2}=\frac{-10+2\sqrt{23}}{4} $

See similar equations:

| 16x+8x+20+128=180 | | 16x+(8x+20)+(128)=180 | | 3x026=5x+10 | | /v-8=8 | | 4(x-1)-(x-2)=5(x+1)+3 | | 19x11=19 | | 7b=3(b+4) | | 5x-15=7x+11 | | x+-2.5=14-2 | | (x+4)*6=48 | | x/4+x/2=3 | | 25+3b-11=74 | | 2(x^2+12x-864)=0 | | X/4=x/2+3 | | 2x^27=15x | | 3-x/4=x/2 | | 5-(4x-6)=2x | | 2x=365/4) | | x^2+9x+15=(x^2+15) | | 2x-54x^-2=0 | | A-3=5b | | 2x(1-27x^-1)=0 | | 7x+12x=90 | | X-3=1/2x | | 0.5x3+173611.212743x2+0.000052455x-0.00000000714=0 | | 4/5x-1=0 | | x-0,15x=125 | | 4x-x2=0 | | 3x^2-9x-6=3x-6 | | 3x-2=7x= | | (x/2+9x+15)=(x+5)^2 | | 5x+x+1=13 |

Equations solver categories