1/2n+10=1/4n+54

Simple and best practice solution for 1/2n+10=1/4n+54 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/2n+10=1/4n+54 equation:



1/2n+10=1/4n+54
We move all terms to the left:
1/2n+10-(1/4n+54)=0
Domain of the equation: 2n!=0
n!=0/2
n!=0
n∈R
Domain of the equation: 4n+54)!=0
n∈R
We get rid of parentheses
1/2n-1/4n-54+10=0
We calculate fractions
4n/8n^2+(-2n)/8n^2-54+10=0
We add all the numbers together, and all the variables
4n/8n^2+(-2n)/8n^2-44=0
We multiply all the terms by the denominator
4n+(-2n)-44*8n^2=0
Wy multiply elements
-352n^2+4n+(-2n)=0
We get rid of parentheses
-352n^2+4n-2n=0
We add all the numbers together, and all the variables
-352n^2+2n=0
a = -352; b = 2; c = 0;
Δ = b2-4ac
Δ = 22-4·(-352)·0
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{4}=2$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2}{2*-352}=\frac{-4}{-704} =1/176 $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2}{2*-352}=\frac{0}{-704} =0 $

See similar equations:

| -2(-w+2w-3)=30 | | d2=289 | | (x+4)/6+(x-5)/12=14 | | 17=13-6×a | | 16x-10+9=99 | | 3/7​=t/4​ | | 37​=t4​ | | s2=196 | | 20x+1,800=20x | | (x+4)/(6)+(x-5)/(12)=14 | | -8+g=-11 | | 7y+7=6-Y | | (3x+9)+(3x+8)+(3x)=(3x)+(3x)+(4x+2) | | -9(t-2)=2(t+9) | | 15=-6+3x | | q=0.3 | | 4^2-4x=17 | | 6(8x+5)=-3(2-4x) | | 5x/9=-5 | | 4-t=3(+-1)-5 | | 2=x-7/0.10 | | 2*4-1=3*4w+2 | | 16=3a+4=-3 | | 9+4z=45 | | 4x+15+2x+3=180 | | 6xx5+5=53 | | Q(x)=-5x+6 | | 16=3a+4=1 | | y-3=0.5 | | 9x/6=-1 | | X^2+3=(x+4)(x-5) | | X+5=2x+10=33 |

Equations solver categories