1/2n+7-2n-14=5n+1

Simple and best practice solution for 1/2n+7-2n-14=5n+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/2n+7-2n-14=5n+1 equation:



1/2n+7-2n-14=5n+1
We move all terms to the left:
1/2n+7-2n-14-(5n+1)=0
Domain of the equation: 2n!=0
n!=0/2
n!=0
n∈R
We add all the numbers together, and all the variables
-2n+1/2n-(5n+1)-7=0
We get rid of parentheses
-2n+1/2n-5n-1-7=0
We multiply all the terms by the denominator
-2n*2n-5n*2n-1*2n-7*2n+1=0
Wy multiply elements
-4n^2-10n^2-2n-14n+1=0
We add all the numbers together, and all the variables
-14n^2-16n+1=0
a = -14; b = -16; c = +1;
Δ = b2-4ac
Δ = -162-4·(-14)·1
Δ = 312
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{312}=\sqrt{4*78}=\sqrt{4}*\sqrt{78}=2\sqrt{78}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-2\sqrt{78}}{2*-14}=\frac{16-2\sqrt{78}}{-28} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+2\sqrt{78}}{2*-14}=\frac{16+2\sqrt{78}}{-28} $

See similar equations:

| (z=1.2)/5=3.6 | | x3+3x2+15=0 | | 10y+3-7y-9=0 | | 15-46=3(x-1)-7 | | 9x+13+12x-29=180 | | (5x-23)+(7x-1)=180 | | 6x+20=8x-10 | | 30x-60=300 | | 3.6*x=1.3(x+6) | | d=0.3×2.40 | | 3.6*x=1.3(x+4) | | x=0.35x+1 | | ∣2x−8∣=∣x+5∣∣2x−8∣=∣x+5∣ | | 3.6*x=1.2(x+4) | | 2(x+1)=x*1 | | 3.6*x=1.6(x+4) | | .5(5y-2)+.25(2y+5)=0 | | -3(t+-2)=8 | | 4(v-13)=12 | | -7(3y-6)=8y=3(y=8) | | 11x=54+2x | | 60+300x=480 | | -7g=-9−8g | | 46.12=x*0.8+29 | | 2,500+4p=5,400 | | 32=-6x-9x | | (b+7​)(b−12)=0 | | (7y-4)-(3y-8)=0 | | 93.97=4.7p+8.7p-2.6p | | 5+4x=2.25 | | 4+x5=2.25 | | 4/y+5=5/2y |

Equations solver categories