1/2r-3=12-9/6r

Simple and best practice solution for 1/2r-3=12-9/6r equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/2r-3=12-9/6r equation:



1/2r-3=12-9/6r
We move all terms to the left:
1/2r-3-(12-9/6r)=0
Domain of the equation: 2r!=0
r!=0/2
r!=0
r∈R
Domain of the equation: 6r)!=0
r!=0/1
r!=0
r∈R
We add all the numbers together, and all the variables
1/2r-(-9/6r+12)-3=0
We get rid of parentheses
1/2r+9/6r-12-3=0
We calculate fractions
6r/12r^2+18r/12r^2-12-3=0
We add all the numbers together, and all the variables
6r/12r^2+18r/12r^2-15=0
We multiply all the terms by the denominator
6r+18r-15*12r^2=0
We add all the numbers together, and all the variables
24r-15*12r^2=0
Wy multiply elements
-180r^2+24r=0
a = -180; b = 24; c = 0;
Δ = b2-4ac
Δ = 242-4·(-180)·0
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{576}=24$
$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-24}{2*-180}=\frac{-48}{-360} =2/15 $
$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+24}{2*-180}=\frac{0}{-360} =0 $

See similar equations:

| 5(x—5)=25 | | (3x+50)∘+(5x−20)∘=180∘ | | 3x=1/2(x+30) | | 20x-(-12)=32x+48 | | 5w-13=87 | | 4x-5x=x-19 | | 5r+8-7=-28.5 | | -12.5=(h+3.5) | | -20x-(-12)=32x+48 | | -x+27=-6x+52 | | 4(3x+2)=-13×-10 | | -30=2(3x+3) | | -6.5(3c-5.5)=-25.5 | | x=3(x+1)=24 | | 5^n=625,n= | | 12=2(3x-1)-4 | | 3(4x+1)=-2x+17 | | 3(4x-3)-3=48 | | 2x+2x+2x+2x+2x=10 | | -(2x+2)=10 | | 2(x)+5(2x)=31 | | 9-3r=81 | | 14x+2=44= | | P=15-1/2*q | | 10=2x=x+7 | | 2q+3=1 | | 2/3X+7/2x=5 | | 4x-2/2=13 | | -9.5+8(1-8.5a)=28.5 | | 5(x+3)=4(x+5) | | 14x-4.6x=6+x+2-2 | | 2x+6=18-22x+6=162x=16-62x=10x=5 |

Equations solver categories