1/2u-2/3=4/5u+1

Simple and best practice solution for 1/2u-2/3=4/5u+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/2u-2/3=4/5u+1 equation:



1/2u-2/3=4/5u+1
We move all terms to the left:
1/2u-2/3-(4/5u+1)=0
Domain of the equation: 2u!=0
u!=0/2
u!=0
u∈R
Domain of the equation: 5u+1)!=0
u∈R
We get rid of parentheses
1/2u-4/5u-1-2/3=0
We calculate fractions
(-100u^2)/90u^2+45u/90u^2+(-72u)/90u^2-1=0
We multiply all the terms by the denominator
(-100u^2)+45u+(-72u)-1*90u^2=0
Wy multiply elements
(-100u^2)-90u^2+45u+(-72u)=0
We get rid of parentheses
-100u^2-90u^2+45u-72u=0
We add all the numbers together, and all the variables
-190u^2-27u=0
a = -190; b = -27; c = 0;
Δ = b2-4ac
Δ = -272-4·(-190)·0
Δ = 729
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{729}=27$
$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-27)-27}{2*-190}=\frac{0}{-380} =0 $
$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-27)+27}{2*-190}=\frac{54}{-380} =-27/190 $

See similar equations:

| 2-2x=917 | | 17=9(2-2x) | | 40+(2x)=8 | | -14n=252 | | -0+2y=6 | | 4/x-12=24 | | 5^3x=12 | | 1.50r=8.95=26.95 | | 10+v=-3-2 | | 4x-4-2x+6=40-8 | | -36y=36 | | 3/2=1/6w | | -2x-4=1/2x-5 | | -6-3x+6x+16=31 | | 3x-8(2x+3)=8(2x+5) | | x-1025=2541 | | 3(v+4)=-6(3v-1)+9v | | 6x=6x+3-3 | | 7-3b+b2=8 | | 3x-18-5x-50=24 | | -6(w+2)=4w-7+2(4w+5) | | -3(-8v+4)-7v=3(v-3)-7 | | 6(v+4)=3v+36 | | x32+75=102 | | -5v-35=8(v+7) | | -2(y+5)=8y+20 | | -15=2(x-5)+3x | | 16X-40-10-5x=-4x | | 2(w+7)-7w=39 | | 9(x-4)÷3=3(x+8)÷13 | | (13x+9)+(5x-9)=180 | | -18=3y+7(y-4) |

Equations solver categories