If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/2v+11/12-11/4v=-5/12
We move all terms to the left:
1/2v+11/12-11/4v-(-5/12)=0
Domain of the equation: 2v!=0
v!=0/2
v!=0
v∈R
Domain of the equation: 4v!=0We get rid of parentheses
v!=0/4
v!=0
v∈R
1/2v-11/4v+11/12+5/12=0
We calculate fractions
48v/96v^2+(-264v)/96v^2+(160v^2+11)/96v^2=0
We multiply all the terms by the denominator
48v+(-264v)+(160v^2+11)=0
We get rid of parentheses
160v^2+48v-264v+11=0
We add all the numbers together, and all the variables
160v^2-216v+11=0
a = 160; b = -216; c = +11;
Δ = b2-4ac
Δ = -2162-4·160·11
Δ = 39616
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{39616}=\sqrt{64*619}=\sqrt{64}*\sqrt{619}=8\sqrt{619}$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-216)-8\sqrt{619}}{2*160}=\frac{216-8\sqrt{619}}{320} $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-216)+8\sqrt{619}}{2*160}=\frac{216+8\sqrt{619}}{320} $
| 110=3x^2-2x | | 0.5v+0.917-1.25v=-0.417 | | 80=-4.9x^2+20x+70 | | 117=(3x+1)(2x+1) | | 2+5x−9=3x+2(x−7) | | 2/(x+3)-2x+3/(x-1)=6x-5/(x^22x-3) | | 2/(x+3)-2x3/(x-1)=6x-5/(x^2+2x-3) | | 2/(x+3)-2x3/(x-1)=6x-5/(x^22x-3) | | 7(7−3x)=−56 | | 0=-16t^2+20t-6 | | 3x+16=5x-22 | | 12(2-x)=6(1-x) | | (4/5)+(4/5)x=10 | | 14+3y=90 | | 42x=1000 | | 7.92x+63.36=13.86x+110.88 | | 2k-2.3=4.9 | | .75w=12.75 | | 2k-2.3=49 | | 9.5w=161.5 | | 7.61+w=24.61 | | 6x-5+3x=34-4x | | 2*x+x+3=36 | | 2x+8=32-x | | 0=-0.0005x^2+1.2345x-2.2 | | 0=16x^2+48.6x+37.5 | | 8(j-4)=5(j-4) | | 2(3x-13)=16 | | 0=-0.05x^2+x+1.89 | | 12+×=2-4x | | -5+6k=43 | | 5x2-9=41 |