If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/2x+(x-15)+100+(x-25)+1/2x=540
We move all terms to the left:
1/2x+(x-15)+100+(x-25)+1/2x-(540)=0
Domain of the equation: 2x!=0We add all the numbers together, and all the variables
x!=0/2
x!=0
x∈R
1/2x+(x-15)+(x-25)+1/2x-440=0
We get rid of parentheses
1/2x+x+x+1/2x-15-25-440=0
We multiply all the terms by the denominator
x*2x+x*2x-15*2x-25*2x-440*2x+1+1=0
We add all the numbers together, and all the variables
x*2x+x*2x-15*2x-25*2x-440*2x+2=0
Wy multiply elements
2x^2+2x^2-30x-50x-880x+2=0
We add all the numbers together, and all the variables
4x^2-960x+2=0
a = 4; b = -960; c = +2;
Δ = b2-4ac
Δ = -9602-4·4·2
Δ = 921568
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{921568}=\sqrt{16*57598}=\sqrt{16}*\sqrt{57598}=4\sqrt{57598}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-960)-4\sqrt{57598}}{2*4}=\frac{960-4\sqrt{57598}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-960)+4\sqrt{57598}}{2*4}=\frac{960+4\sqrt{57598}}{8} $
| 3/n=5/12 | | 30=d/6 | | 2x=3x+26 | | x+.48=3.5 | | 8.7=d/6 | | 6=2(y+2)y= | | 4y=5=21 | | 36n*36n=144 | | y=2(+2)y= | | 4.5y=16 | | -4m+2=-5m+9 | | 14p-1/5=1 | | 8v=4(4v+2) | | 0=96+80x-16x^2 | | 86+x=2x+10 | | 0=-16x^2+64x-80 | | 80=-16x^2×64x | | 16+2y=38 | | 4(15-2x)-4-(6-8x)=6x | | 6x+-6=12 | | 3s−4=2 | | 6k^2+11k+4=0 | | 6x+-6=12x | | 7x-4=115 | | 35x=8,75•10 | | 12n^2-52n+48=0 | | X-10=6x+3 | | 9/4y−12=4/1y−4 | | 2w=65-2w | | 6+0.07x=24+0.04 | | 2-16t=-6(-3t+2) | | 9(x-4)/3=3(x+6)/11 |