If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/2x+(x-35)+x+(x-46)=180
We move all terms to the left:
1/2x+(x-35)+x+(x-46)-(180)=0
Domain of the equation: 2x!=0We add all the numbers together, and all the variables
x!=0/2
x!=0
x∈R
x+1/2x+(x-35)+(x-46)-180=0
We get rid of parentheses
x+1/2x+x+x-35-46-180=0
We multiply all the terms by the denominator
x*2x+x*2x+x*2x-35*2x-46*2x-180*2x+1=0
Wy multiply elements
2x^2+2x^2+2x^2-70x-92x-360x+1=0
We add all the numbers together, and all the variables
6x^2-522x+1=0
a = 6; b = -522; c = +1;
Δ = b2-4ac
Δ = -5222-4·6·1
Δ = 272460
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{272460}=\sqrt{4*68115}=\sqrt{4}*\sqrt{68115}=2\sqrt{68115}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-522)-2\sqrt{68115}}{2*6}=\frac{522-2\sqrt{68115}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-522)+2\sqrt{68115}}{2*6}=\frac{522+2\sqrt{68115}}{12} $
| -15.84+9b=9.8b | | 3=4x+5-2x+-2 | | 3(q-5)=9 | | 12.5+.40l=14.75+.25l | | 15-4v=-3v | | 36x=232 | | -x-5x=14 | | 10m+20=-19+13m | | 5(x+3)-7=-2(x+4)+1 | | -(h-10)=-4 | | 2=m−13 | | -n-(n+1)=182 | | 14.34-11.2m=-16.06-13.2m | | 7x-34/6=-8 | | 5x+6x-3=-18 | | 35/x=15 | | |p|/5-1=0 | | 8(v-8)=-5v-38 | | 7−d=2 | | S(t)=54+3t | | 45x+1=180 | | -10+19n=-19+18n+17 | | 6x-23/5=-7 | | .75a-3=3+.25a | | Y=33-9x/3 | | -7x=−42 | | 2/3s-2/3=s/6=4/3 | | -20+4d=2d+20 | | 0.75a−3=3+0.25a | | 2(x-5)=4(x+5) | | 29.5=3.1x | | -6+-w=-14 |