1/2x+(x-46)+x+(x-35)=180

Simple and best practice solution for 1/2x+(x-46)+x+(x-35)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/2x+(x-46)+x+(x-35)=180 equation:



1/2x+(x-46)+x+(x-35)=180
We move all terms to the left:
1/2x+(x-46)+x+(x-35)-(180)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
We add all the numbers together, and all the variables
x+1/2x+(x-46)+(x-35)-180=0
We get rid of parentheses
x+1/2x+x+x-46-35-180=0
We multiply all the terms by the denominator
x*2x+x*2x+x*2x-46*2x-35*2x-180*2x+1=0
Wy multiply elements
2x^2+2x^2+2x^2-92x-70x-360x+1=0
We add all the numbers together, and all the variables
6x^2-522x+1=0
a = 6; b = -522; c = +1;
Δ = b2-4ac
Δ = -5222-4·6·1
Δ = 272460
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{272460}=\sqrt{4*68115}=\sqrt{4}*\sqrt{68115}=2\sqrt{68115}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-522)-2\sqrt{68115}}{2*6}=\frac{522-2\sqrt{68115}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-522)+2\sqrt{68115}}{2*6}=\frac{522+2\sqrt{68115}}{12} $

See similar equations:

| (-9-2k)=29 | | 2x+10-3=4 | | 5(x=3)+2x=27 | | -11+3(b+5)=13 | | z-12=1 | | 6(2x-1)-(x-4)=-2(3x+2) | | 5x+3x-4=5+7x= | | (8x-24)+(7x-5)=180 | | (6x-5)(2x+1)=0 | | 9-3x-1=9 | | 3(9x+8)=4((8x-9) | | -8x²-16=0 | | (3x+5)^2x+1=(6x+2)^2x+1 | | 4b+2b+3b−2=16 | | -14-8x=-( | | 12+5x-8=12x+14 | | 28+8x=8(x=3)+2 | | 9x−1=26 | | 12x+48=79 | | 5b+40=12b | | -13+b=3b-1 | | 8x−8=44 | | (8x-25)=(7x-5)=180 | | -2-7z=-19-2z-6z | | 5^2x+5^x+1-50=0 | | X+4+3x=18 | | 6x-2(3x+8)=-16 | | A40=-1191,d=-30 | | 20+13c=5+12c | | 23x-(5x+10)=15x+24 | | ((x-48)^{1/2})^{2}=x^{0} | | 20+.50x=2x |

Equations solver categories