1/2x+.3333333=3x-3

Simple and best practice solution for 1/2x+.3333333=3x-3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/2x+.3333333=3x-3 equation:



1/2x+.3333333=3x-3
We move all terms to the left:
1/2x+.3333333-(3x-3)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
We add all the numbers together, and all the variables
1/2x-(3x-3)+0.3333333=0
We get rid of parentheses
1/2x-3x+3+0.3333333=0
We multiply all the terms by the denominator
-3x*2x+3*2x+(0.3333333)*2x+1=0
We multiply parentheses
-3x*2x+3*2x+0.6666666x+1=0
Wy multiply elements
-6x^2+6x+0.6666666x+1=0
We add all the numbers together, and all the variables
-6x^2+6.6666666x+1=0
a = -6; b = 6.6666666; c = +1;
Δ = b2-4ac
Δ = 6.66666662-4·(-6)·1
Δ = 68.444443555556
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6.6666666)-\sqrt{68.444443555556}}{2*-6}=\frac{-6.6666666-\sqrt{68.444443555556}}{-12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6.6666666)+\sqrt{68.444443555556}}{2*-6}=\frac{-6.6666666+\sqrt{68.444443555556}}{-12} $

See similar equations:

| b+6=7(6b-5) | | −20=−4x-6x | | G(-2)=x2-2x | | )7x-10x+18+2x=-5 | | 11+3n=1+n | | 5(2x+8)=-4(x+11) | | y+y+y+y=600 | | 2n-(-3.31)=12.51 | | -n-5=8n-4n | | 3+6t=5 | | B*C=11+2x | | 8x+23x-14-2x=14x+31 | | 2b+4.8=16.8 | | C=11+2x | | -3p=6-5p | | -2(v-2)=- | | 4.8+9.8x+9=3.8x-16+3.8x | | 18.84-11t=18.13-3.9t | | − | | − | | − | | n+5=-15-3n | | 1.1n+1.5n−5.6=-16 | | 4x/3+2(x-3)+7=31 | | 8+(-3f)=5 | | F(10)=2x-4 | | 8+(-3f(=5 | | 4-n=-14-4n | | 9+3q=11= | | 8x-$=7x-1 | | 23+3m5=3115 | | 4*x*2=12 |

Equations solver categories