If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/2x+1/2x+(x+15)+(x+25)+100=540
We move all terms to the left:
1/2x+1/2x+(x+15)+(x+25)+100-(540)=0
Domain of the equation: 2x!=0We add all the numbers together, and all the variables
x!=0/2
x!=0
x∈R
1/2x+1/2x+(x+15)+(x+25)-440=0
We get rid of parentheses
1/2x+1/2x+x+x+15+25-440=0
We multiply all the terms by the denominator
x*2x+x*2x+15*2x+25*2x-440*2x+1+1=0
We add all the numbers together, and all the variables
x*2x+x*2x+15*2x+25*2x-440*2x+2=0
Wy multiply elements
2x^2+2x^2+30x+50x-880x+2=0
We add all the numbers together, and all the variables
4x^2-800x+2=0
a = 4; b = -800; c = +2;
Δ = b2-4ac
Δ = -8002-4·4·2
Δ = 639968
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{639968}=\sqrt{16*39998}=\sqrt{16}*\sqrt{39998}=4\sqrt{39998}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-800)-4\sqrt{39998}}{2*4}=\frac{800-4\sqrt{39998}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-800)+4\sqrt{39998}}{2*4}=\frac{800+4\sqrt{39998}}{8} $
| 2a-10=a+60 | | -9(t-3)=4(t+2)-t | | ((x+10)•2)+(x•2)=44 | | 3(x+6)=2x+4x-36 | | 18x+14=10x-18 | | -4(v+7)=5v+44 | | ((x+10)•2)+(x+2)=44 | | 7y-28=4(y-4) | | -1.8=(2z-18)/5 | | 8u-48=-5u+43 | | 3(x+6)-8x=38 | | 2x+5x-5x=-1 | | 8(y+2)-6y=30 | | 4(3s+2)=2(s-1) | | 2(x+8)=4x+10-2 | | |2x-11|=9x | | 49-2a=72-78 | | 8X(40+7)=(8x—)+(8x7) | | 8(3m+1)=8 | | 4(2p+7)=108 | | 21-17f+45f=-63 | | 15x-10x+2=3x+10 | | -22e-25-9e=99 | | 1/2x-9/5=-2/3 | | 1=3h-7 | | 1/2x+6=1/4 | | –10p−10=10−5p | | 4x-18=-3x+8=180 | | 1/7(14r+28-3r=6 | | -7g-10=-6g | | -3n=-6-4n | | 21d+75-29d=19 |