If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/2x+1/2x+(x-25)+100+(x-15)=540
We move all terms to the left:
1/2x+1/2x+(x-25)+100+(x-15)-(540)=0
Domain of the equation: 2x!=0We add all the numbers together, and all the variables
x!=0/2
x!=0
x∈R
1/2x+1/2x+(x-25)+(x-15)-440=0
We get rid of parentheses
1/2x+1/2x+x+x-25-15-440=0
We multiply all the terms by the denominator
x*2x+x*2x-25*2x-15*2x-440*2x+1+1=0
We add all the numbers together, and all the variables
x*2x+x*2x-25*2x-15*2x-440*2x+2=0
Wy multiply elements
2x^2+2x^2-50x-30x-880x+2=0
We add all the numbers together, and all the variables
4x^2-960x+2=0
a = 4; b = -960; c = +2;
Δ = b2-4ac
Δ = -9602-4·4·2
Δ = 921568
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{921568}=\sqrt{16*57598}=\sqrt{16}*\sqrt{57598}=4\sqrt{57598}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-960)-4\sqrt{57598}}{2*4}=\frac{960-4\sqrt{57598}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-960)+4\sqrt{57598}}{2*4}=\frac{960+4\sqrt{57598}}{8} $
| 6n-2=8n | | 1x+2x+3×=144 | | 0.8d-9+3.2d=11 | | 6x+68=9-7 | | -2f-3=f | | (11t-5)(6t-5)=0 | | 6|8+10x|=72 | | x(x-2)=x(1-x) | | 13x-68=10x+31 | | 6x+68=9x7 | | 12r+7=55 | | 18w–13w–5w+3w+w=12 | | z/5+3=-4 | | 1+40/j=16 | | 4/7r=-2 | | 7(2c-6)+11c=108 | | -5x=-40+3× | | -20b-9b+-13b-12b+16b=14 | | 5+16=4-7x | | t÷5-1=11 | | u/5+8=23 | | 4(2-3x)=56 | | -2a-7a+-14a+10=-13 | | -2/3(z+3)=-3/8(z+5) | | 1.525x^2-0.5x-1=0 | | 24=y/4-16 | | a÷6+3=16 | | .6x=4.5 | | 2y-4y=-12 | | 7m+4m-10m-1=18 | | -20b–9b+-13b–-12b+16b=14 | | 3m+2=35 |