1/2x+1/2x+8=2x+10

Simple and best practice solution for 1/2x+1/2x+8=2x+10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/2x+1/2x+8=2x+10 equation:



1/2x+1/2x+8=2x+10
We move all terms to the left:
1/2x+1/2x+8-(2x+10)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
We get rid of parentheses
1/2x+1/2x-2x-10+8=0
We multiply all the terms by the denominator
-2x*2x-10*2x+8*2x+1+1=0
We add all the numbers together, and all the variables
-2x*2x-10*2x+8*2x+2=0
Wy multiply elements
-4x^2-20x+16x+2=0
We add all the numbers together, and all the variables
-4x^2-4x+2=0
a = -4; b = -4; c = +2;
Δ = b2-4ac
Δ = -42-4·(-4)·2
Δ = 48
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{48}=\sqrt{16*3}=\sqrt{16}*\sqrt{3}=4\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4\sqrt{3}}{2*-4}=\frac{4-4\sqrt{3}}{-8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4\sqrt{3}}{2*-4}=\frac{4+4\sqrt{3}}{-8} $

See similar equations:

| 6.2g+8=2.2g+32 | | 20+11x=14+15x | | 2x-7=9x+7 | | 9x+4x+12=77 | | -9(2x+8)+30=-18x-42 | | z2+7z-8=0 | | z2+7z-8=20 | | -8-4x^2=-204 | | 10m^2-5m=-3 | | 22÷7×36=k | | 2m+60=-6m | | 2x+20=4x-70=180 | | -5(x+3)-4=5-13x | | 195=10x-5 | | x3=12. | | {64/7}^5{64/7}^x={4/3}^18 | | 2/6b+3=2/9 | | 2(2-3x)-x=12-3x | | 1/3=12/8a-29 | | 2(x+3)-10=5x-6 | | -3(x-11)=-60 | | 23+3x=41 | | 3+8x=12x-1 | | 1x=25 | | 2x+25=11/5x=20 | | 36=10m-4 | | 4x=2(x-7) | | 36=10m=4 | | 8-w=2w-2 | | 2+6x=9x+8 | | 5x-8=3x=6 | | 7=7n |

Equations solver categories