1/2x+1/2x+x+x=160

Simple and best practice solution for 1/2x+1/2x+x+x=160 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/2x+1/2x+x+x=160 equation:



1/2x+1/2x+x+x=160
We move all terms to the left:
1/2x+1/2x+x+x-(160)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
We add all the numbers together, and all the variables
2x+1/2x+1/2x-160=0
We multiply all the terms by the denominator
2x*2x-160*2x+1+1=0
We add all the numbers together, and all the variables
2x*2x-160*2x+2=0
Wy multiply elements
4x^2-320x+2=0
a = 4; b = -320; c = +2;
Δ = b2-4ac
Δ = -3202-4·4·2
Δ = 102368
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{102368}=\sqrt{16*6398}=\sqrt{16}*\sqrt{6398}=4\sqrt{6398}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-320)-4\sqrt{6398}}{2*4}=\frac{320-4\sqrt{6398}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-320)+4\sqrt{6398}}{2*4}=\frac{320+4\sqrt{6398}}{8} $

See similar equations:

| 7x-10+3x+6=180 | | -2x(x+4)+6=3 | | 12=15(x=-1/5) | | 9(b-3)=9 | | 12=15(x=1/5 | | 7x+(-12)=2 | | (x^2-4x)(x-2)=(14-9x)(x-2) | | 2x+15=69−4x | | 7^5-x=1÷343 | | 5x-4=3x+144 | | 5n+34=-48+-24n | | 3x-4x2x+6=7x-10 | | 5n+34=-8(6+3n) | | 8(a-2)=7a+11 | | -5r-18=3r+(-50) | | 88x=-7x | | p=(-8)=4 | | 3x+18+90=180 | | -0.4x=-0.03 | | 7x+4x=132 | | 22-x=2x-10 | | P=4x^2-21+20=0 | | 2(1-x)=5(7-x) | | -42=-4x-3x | | 2(x-1)=3(6-x) | | -6x+9x-8=-4 | | 1+2n=7000000 | | 10x+12=-6x+44 | | 5s+13=-2s+22 | | (2a-6)/2=20 | | -7x-4=-70-x | | -6x+7=-5x-4 |

Equations solver categories