1/2x+1/2x+x+x=180

Simple and best practice solution for 1/2x+1/2x+x+x=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/2x+1/2x+x+x=180 equation:



1/2x+1/2x+x+x=180
We move all terms to the left:
1/2x+1/2x+x+x-(180)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
We add all the numbers together, and all the variables
2x+1/2x+1/2x-180=0
We multiply all the terms by the denominator
2x*2x-180*2x+1+1=0
We add all the numbers together, and all the variables
2x*2x-180*2x+2=0
Wy multiply elements
4x^2-360x+2=0
a = 4; b = -360; c = +2;
Δ = b2-4ac
Δ = -3602-4·4·2
Δ = 129568
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{129568}=\sqrt{16*8098}=\sqrt{16}*\sqrt{8098}=4\sqrt{8098}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-360)-4\sqrt{8098}}{2*4}=\frac{360-4\sqrt{8098}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-360)+4\sqrt{8098}}{2*4}=\frac{360+4\sqrt{8098}}{8} $

See similar equations:

| 5A+10=i | | r=0.66 | | X/4-3/5/4/3-7x=-3/20 | | 2^x=16 | | 1+5×-2y=0 | | x=1/4x-1 | | F(1)=7x-3x^2 | | 33-4a=11a-4a | | 3t^2+27=0 | | 4-(x-1)=2(x+2) | | (5/6)^x2+3x-8=(5/6)^2 | | 4x^2+12x-523=0 | | 3x2–12x+24=0 | | 5(3-m)=4(m-6) | | (2x-1)^2=8 | | 3y-y+20=180 | | 3x/2=225 | | X^2+9y^2-6y+1=0 | | x+(3x-6)+2/3(3x-6)+2=168 | | 4t-3/3=7 | | 105^x=11 | | x(x+1)^2(x+2)=72 | | 25=2w-13 | | 5y-5=4 | | 10x^2=108 | | 28=3y-11 | | |5÷2x+4|+4=9 | | 84=4t | | x/x+1=99,9 | | 2x^2+31-17=0 | | 2m=(1/4)m-7 | | 9x-7+2x=4-(x+3) |

Equations solver categories