1/2x+1/4=1/4x+6

Simple and best practice solution for 1/2x+1/4=1/4x+6 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/2x+1/4=1/4x+6 equation:



1/2x+1/4=1/4x+6
We move all terms to the left:
1/2x+1/4-(1/4x+6)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
Domain of the equation: 4x+6)!=0
x∈R
We get rid of parentheses
1/2x-1/4x-6+1/4=0
We calculate fractions
64x/128x^2+(-2x)/128x^2+2x/128x^2-6=0
We multiply all the terms by the denominator
64x+(-2x)+2x-6*128x^2=0
We add all the numbers together, and all the variables
66x+(-2x)-6*128x^2=0
Wy multiply elements
-768x^2+66x+(-2x)=0
We get rid of parentheses
-768x^2+66x-2x=0
We add all the numbers together, and all the variables
-768x^2+64x=0
a = -768; b = 64; c = 0;
Δ = b2-4ac
Δ = 642-4·(-768)·0
Δ = 4096
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{4096}=64$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(64)-64}{2*-768}=\frac{-128}{-1536} =1/12 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(64)+64}{2*-768}=\frac{0}{-1536} =0 $

See similar equations:

| 8x+7=20x-22 | | 4x+4+16x-4=64 | | (4)/(7)t-1=-(3)/(7)t+9 | | 8+2r=r+6 | | 7,75k+15=-6+2.75k+6 | | X=y-29 | | -2(-3x-5)=70 | | 2x^2+6x1=0 | | -u+239=294 | | 70=5(x-7)+5 | | t+2/3=1+t-1/2 | | 1/2.09x=33.44 | | 211=6-u | | 3x-15=11x+1 | | 2(-5)-y=10 | | 54=174-y | | 14y-17+3y+5+7y+2=180 | | 7x-4=123 | | 2.09/1x=33.44 | | -4m+6-2m-4=14 | | x²+5=105 | | 3x+(-2x+10)=5 | | -x+84=279 | | 12x-(2x+4)=10 | | 3000+0.1x=2.5x | | -30=-12+3x | | 14y-17=3y+5=7y+2=180 | | -16x-32+112=-52 | | 69*t/60=60*(t+5)/60 | | 73=-u+276 | | 6(x+⅓)=⅓(12x)+⅔ | | -10-10v=-10v-10 |

Equations solver categories